A Proofs of Selected Results

Proposition 4. Formula-based incision functions and standard incision functions are interchangeable, that is,

- 1. for all standard incision function σ there is a formulabased incision function σ' such that $\sigma(\mathcal{K} \perp\!\!\!\perp \alpha) = \sigma'(\alpha)$, for all α ;
- for all formula-based incision function σ' there is a standard incision function σ such that σ(K⊥⊥ α) = σ'(α), for all α;

Proof. Let us fix an arbitrary belief base \mathcal{K} .

1. Let σ be a standard incision function on \mathcal{K} , we construct the following formula-based function σ' :

$$\sigma'(\alpha) = \sigma(\mathcal{K} \bot\!\!\!\bot \alpha).$$

It is clear that σ and σ' coincide and that σ' is a well-defined function.

We still need to prove that σ' is indeed a formula-based function. Satisfaction of conditions (1) and (2) in Definition 3 follows respectively from conditions (1) and (2) in Definition 2. For item (3), note that if two formulae α and β have the same set of kernels, then $\sigma(\mathcal{K} \perp \!\!\!\perp \alpha) = \sigma(\mathcal{K} \perp \!\!\!\perp \beta)$ which implies $\sigma'(\alpha) = \sigma'(\beta)$.

2. Let σ' be a formula-based incision function on \mathcal{K} , we construct the following standard-incision function σ :

$$\sigma(X) = \sigma'(\alpha)$$
, for some $\alpha \in \mathcal{L}$, such that $X = \mathcal{K} \perp \alpha$.

We have to show three things: (a) σ is a well-defined function, (2) σ is a standard-incision function, and (c) $\sigma(\mathcal{K} \perp\!\!\!\perp \alpha) = \sigma'(\alpha)$, for all $\alpha \in \mathcal{L}$. For item (a), let $X \in \mathcal{C}(\mathcal{K})$. Thus, $X = \mathcal{K} \perp\!\!\!\perp \beta$, for some $\beta \in \mathcal{L}$. This concludes the proof that σ is a well-defined function. We proceed to show that σ is a standard incision-function (b) and that $\sigma(\mathcal{K} \perp\!\!\!\perp \alpha) = \sigma'(\alpha)$, for all $\alpha \in \mathcal{L}$ (c). Let $\alpha \in \mathcal{L}$. From construction

$$\sigma(\mathcal{K} \bot\!\!\!\bot \alpha) = \sigma'(\beta),$$

for some $\beta \in \mathcal{L}$ such that

Let us fix such a β . To prove that σ is indeed a standardincision function we have to show that items (1) and (2) from Definition 2 are satisfied:

(1) we will show that $\sigma(\mathcal{K} \perp\!\!\!\perp \alpha) \subseteq \bigcup \mathcal{K} \perp\!\!\!\perp \alpha$. From item (1) at Definition 3, we get that $\sigma'(\beta) \subseteq \bigcup \mathcal{K} \perp\!\!\!\perp \beta$. Thus, as $\mathcal{K} \perp\!\!\!\perp \alpha = \mathcal{K} \perp\!\!\!\perp \beta$ and $\sigma(\mathcal{K} \perp\!\!\!\perp \alpha) = \sigma'(\beta)$, we get $\sigma(\mathcal{K} \perp\!\!\!\perp \alpha) \subseteq \bigcup \mathcal{K} \perp\!\!\!\perp \alpha$.

(2) let $X \in \mathcal{K} \perp \alpha$ such that $X \neq \emptyset$. We will show that $X \cap \sigma(\mathcal{K} \perp \alpha) \neq \emptyset$. As $\mathcal{K} \perp \alpha = \mathcal{K} \perp \beta$, we get that $X \in \mathcal{K} \perp \beta$. Thus, from item (2) at Definition 3, we get that $X \cap \sigma'(\beta) \neq \emptyset$. Thus, as $\sigma'(\beta) = \sigma(\mathcal{K} \perp \alpha)$, we get that $X \cap \sigma(\mathcal{K} \perp \alpha) \neq \emptyset$.

This concludes the proof that σ is a standard-incision function (b). We proceed to show (c) $\sigma(\mathcal{K} \perp \!\!\!\perp \alpha) = \sigma'(\alpha)$. From condition (3) of Definition 3, we have that $\sigma'(\alpha) = \sigma'(\beta)$. This jointly with $\sigma(\mathcal{K} \perp \!\!\!\perp \alpha) = \sigma'(\beta)$ implies that $\sigma(\mathcal{K} \perp \!\!\!\perp \alpha) = \sigma'(\alpha)$. **Theorem 7.** If Cn is Tarskian and satisfies compactness, then a contraction function satisfies success, inclusion, vacuity, uniformity, core-retainment, and relative-closure iff it is a smooth kernel contraction function.

Proof. Let Cn be a Tarskian consequence operator satisfying compactness.

- " \Rightarrow " Let $\dot{-}$ be a contraction function, defined on a belief base \mathcal{K} , satisfying success, inclusion, vacuity, uniformity, core-retainment, and relative-closure. We have from Theorem 6 that $\dot{-}$ corresponds to a kernel contraction function $\dot{-}_{\sigma}$. To complete the proof, we need to show that σ is smooth. Let $\alpha, \varphi \in \mathcal{L}$ and $\mathcal{K}' \subseteq \mathcal{K}$ such that $\varphi \in Cn(\mathcal{K}')$ and $\varphi \in \sigma(\alpha)$. Thus, $\varphi \in \mathcal{K}$. We will show that $\mathcal{K}' \cap \sigma(\alpha) \neq \emptyset$. Let us suppose, for contradiction, that $\mathcal{K}' \cap \sigma(\alpha) = \emptyset$. Thus, $\mathcal{K}' \subseteq \mathcal{K} \div_{\sigma} \alpha$, which implies from monotonicty that $\varphi \in Cn(\mathcal{K} \div_{\sigma} \alpha)$. As $\dot{-}_{\sigma}$ satisfies relative-closure, we have that $\varphi \in \mathcal{K} \div_{\sigma} \alpha$. This implies that $\varphi \notin \sigma(\alpha)$ which is a contradiction. Hence, σ satisfies smoothness.
- " \Leftarrow " let $\dot{-}_{\sigma}$ be a smooth contraction function, defined on a belief base \mathcal{K} . We already have from Theorem 6 that in the presence of monotonicity and compactness, kernel contractions are characterised by the first five rationality postulates. So, we only need to show that $\dot{-}_{\sigma}$ satisfies *relative-closure*. Let us suppose for contradiction that it does not satisfy relative-closure. Thus, there are formulae α and β such that $\beta \in \mathcal{K}, \beta \in Cn(\mathcal{K} \div_{\sigma} \alpha)$ but $\beta \notin \mathcal{K} \div_{\sigma} \alpha$. Recall from definition of contraction functions that $\mathcal{K} \div_{\sigma} \alpha = \mathcal{K} \setminus \sigma(\alpha)$. Therefore,

$$(\mathcal{K} \doteq_{\sigma} \alpha) \cap \sigma(\alpha) = \emptyset,$$

 $\mathcal{K} \doteq_{\sigma} \alpha \subseteq \mathcal{K}$ and $\beta \in \sigma(\alpha)$. By hypothesis $\beta \notin \mathcal{K} \doteq_{\sigma} \alpha$. Thus, from smoothness, we have $(\mathcal{K} \doteq_{\sigma} \alpha) \cap \sigma(\alpha) \neq \emptyset$, which is a contradiction. Hence, we conclude that \doteq_{σ} satisfies relative-closure.

Observation A.1. If Cn is compact than every α -kernel is finite.

Proof. Let \mathcal{K} be a belief base, and and α -kernel $A \in \coprod \alpha$, for some formula α . As A is an α -kernel, it entails α . Thus, As Cn is compact, there is a $A' \subseteq A$ such that $\alpha \in Cn(A')$. However, as A is an α -kernel, there is no proper subset of A that entails α , which means that $A \not\subset A$. Therefore, A = A' which means that A is finite.

Lemma A.2. Given an α -shard \leq_{α} on a belief base \mathcal{K} such that $\alpha \in Cn(\mathcal{K})$. For every $X \subseteq \mathcal{K}$, if X is finite and nonempty, then there is some $\varphi \in X$ such that $X \leq_{\alpha} \{\varphi\}$.

Proof. The proof follows by induction on the site of X.

- **Base:** |X| = 1. Thus, $X = \{\varphi\}$, for some $\varphi \in \mathcal{L}$. As Cn satisfies inclusion, we have that $\{\varphi\} \subseteq Cn(\{\varphi\})$. Thus, from *isotonicity*, $\{\varphi\} \leq_{\alpha} \{\varphi\}$, that is, $X \leq_{\alpha} \{\varphi\}$.
- **Induction Hypothesis (IH)**: if $Y \subseteq \mathcal{K}$ and |Y| < |X| then there is some $\varphi \in Y$ such that $Y \leq_{\alpha} \{\varphi\}$

Induction Step: |X| > 1. Then $X = Y \cup Y'$, for some $Y, Y' \subseteq X$ such that |Y| > 1, |Y'| > 1, and $Y \cap Y' = \emptyset$. Note that |Y| < |X|, |Y'| < |X|. From *conjunctiveness*, $X \leq_{\alpha} Y$ or $X \leq_{\alpha} Y'$. Without loss of generality, let assume the $X \leq_{\alpha} Y$. Thus, from **IH**, that there is some $\varphi \in Y$ such that $Y \leq_{\alpha} \{\varphi\}$. Thus, from transitivity, $X \leq_{\alpha} \{\varphi\}$, and $\varphi \in X$.

Lemma A.3. Given an α -shard \leq_{α} on a belief base \mathcal{K} such that $\alpha \in Cn(\mathcal{K})$. If $\{\varphi\} \in \max_{\leq_{\alpha}}(\mathcal{P}(\mathcal{K}))$ then $A \in \max_{\leq_{\alpha}}(\mathcal{P}(\mathcal{K}))$, for all $A \subseteq \mathcal{K}$ such that $\varphi \in A$.

Proof. Let \leq_{α} be an α -shard on a belief base \mathcal{K} such that $\alpha \in Cn(\mathcal{K})$. Moreover, let $\varphi \in \max_{\leq_{\alpha}}(\mathcal{P}(\mathcal{K}))$, and a $A \subseteq \mathcal{K}$ such that $\varphi \in A$. From *isotonicity*, $\{\varphi\} \leq_{\alpha} A$. Therefore, as $\{\varphi\}$ is maximal, we get that $A \leq_{\alpha} \{\varphi\}$ which means that $A \in \max_{\leq_{\alpha}}(\mathcal{P}(\mathcal{K}))$.

Proposition 11. If \leq_{α} is an α -shard on a belief base \mathcal{K} ,

- *1. every* α *-susceptible formula w.r.t* \leq_{α} *is not* α *-free;*
- 2. α is not tautological and $\alpha \in Cn(\mathcal{K})$ iff there is an α -susceptible formula in \mathcal{K} .

Proof. Let \leq_{α} be an α -shard on a belief base \mathcal{K} .

- let φ be an α-susceptible formula modulo an α-shard ≤_α. Thus, φ does not appear in any of the resistant sets. By definition, the set of all α-free formulae is resistant. Thus, φ does not appear in such a set, which means φ is not α-free.
- 2. the direction "⇐" follows from item 1, because an α-susceptible formula φ necessarily is not α-free which implies that there is some α-kernel A ∈ K⊥⊥ α such φ ∈ A. Therefore, α ∈ Cn(K). For the direction "⇒", from α ∈ Cn(K) we get there is at least one α-kernel X ∈ K⊥⊥ α, and from compactness we know that all of them are finite. Let us fix an α-kernel X ∈ K⊥⊥ α. From α-maximality, we get that X is maximal, and from Lemma A.2, there is a φ ∈ X such that X ≤_α {φ}. Let us fix such a φ. Therefore, as X is maximal, we get that {φ} is also maximal. This implies from Lemma A.3, that every set in which φ appears is not resistant. This means that φ is α-susceptible.

Proposition A.4. For every belief base K, and formulae α and β . The following statements are equivalent:

1. $\mathcal{K} \perp\!\!\!\perp \alpha = \mathcal{K} \perp\!\!\!\perp \beta$; 2. for every $\mathcal{K}' \subseteq \mathcal{K}'$, $\alpha \in Cn(\mathcal{K}')$ iff $\beta \in Cn(\mathcal{K}')$.

Proof. Let \mathcal{K} be a belief base and α and β be formulae.

• "(1) \Rightarrow (2)". Let us assume that $\mathcal{K} \perp \alpha = \mathcal{K} \perp \beta$, and let $\mathcal{K}' \subseteq \mathcal{K}$. We have to show that (a) if $\alpha \in Cn(\mathcal{K}')$ then $\beta \in Cn(\mathcal{K}')$; and (b) if $\beta \in Cn(\mathcal{K}')$ then $\alpha \in Cn(\mathcal{K}')$.

(a) let $\alpha \in Cn(\mathcal{K}')$. Then there is some $X \in \mathcal{K}' \sqcup \alpha$. Thus, as $X \subseteq \mathcal{K}'$ and $\mathcal{K}' \subseteq \mathcal{K}$, we get that $X \subseteq \mathcal{K}$, which means $X \in \mathcal{K} \sqcup \alpha$. From hypothesis, $\mathcal{K} \sqcup \alpha = \mathcal{K} \sqcup \beta$, which implies that $X \in \mathcal{K} \sqcup \beta$. This means that $\beta \in Cn(X)$. Thus, as $X \subseteq \mathcal{K}'$, and Cn is monotonic, we get that $\beta \in Cn(\mathcal{K}')$.

(b) if $\beta \in Cn(\mathcal{K}')$. Then there is some $X \in \mathcal{K}' \perp \beta$. Thus, as $X \subseteq \mathcal{K}'$ and $\mathcal{K}' \subseteq \mathcal{K}$, we get that $X \subseteq \mathcal{K}$, which means $X \in \mathcal{K} \perp \beta$. From hypothesis, $\mathcal{K} \perp \alpha = \mathcal{K} \perp \beta$, which implies that $X \in \mathcal{K} \perp \alpha$. This means that $\alpha \in Cn(X)$. Thus, as $X \subseteq \mathcal{K}'$, and Cn is monotonic, we get that $\alpha \in Cn(\mathcal{K}')$.

- "(2) \Rightarrow (1)". Let us assume that for every $\mathcal{K}' \subseteq \mathcal{K}', \alpha \in Cn(\mathcal{K}')$ iff $\beta \in Cn(\mathcal{K}')$. We will show that $\mathcal{K} \perp \!\!\!\perp \alpha = \mathcal{K} \perp \!\!\!\perp \beta$. For this we need to show that (a) $\mathcal{K} \perp \!\!\!\perp \alpha \subseteq \mathcal{K} \perp \!\!\!\perp \beta$ and (b) $\mathcal{K} \perp \!\!\!\perp \beta \subseteq \mathcal{K} \perp \!\!\!\perp \alpha$.
 - (a) K⊥⊥ α ⊆ K⊥⊥ β. Let X ∈ K⊥⊥ α. Thus, α ∈ Cn(X) which implies from hypothesis that β ∈ Cn(X). Let X' ⊂ X. Thus, as X is an α-kernel, we have that α ∉ Cn(X'), which implies from hypothesis, that β ∉ Cn(X'). Therefore, X ∈ K⊥⊥β.
 (b) Analogous to item (a).

Proposition 13. Every effacing is an incision function.

Proof. Let δ_{τ} be an effacing on a belief base \mathcal{K} . We need to show that δ_{τ} satisfies conditions (1), (2) and (3) from Definition 3. Let $\alpha \in \mathcal{L}$, and \leq_{τ}^{α} the corresponding α -shard given by τ .

- We will show that δ_τ(α) ⊆ UK⊥⊥ α. From Proposition 11, we have that every α-susceptible formulae in K is not α-free, which means that δ_τ(α) ⊆ UK⊥⊥ α.
- (2) Let X ∈ K⊥⊥ α such that X ≠ Ø. We will show X ∩ δ_τ(α) ≠ Ø, that is, there is some φ ∈ X such that φ ∈ δ_τ(α). As X is an α-kernel, we get: (i) that X is maximal, from α-maximality; and (ii) that X is finite, from Observation A.1. The latter implies from Lemma A.2 that there is some φ ∈ X such that X ≤_α {φ}. Note that φ is not α-free, as X is an α-kernel. Therefore, as X is maximal and X ≤_α {φ}, we also that {φ} is also maximal. Therefore, from Lemma A.3, every set in which φ appears is also maximal and not α-free (because φ is not α-free). This means that every set that has φ is not resistant, which implies that φ is α-susceptible. Therefore, φ ∈ δ_τ(α).
- (3) let $\beta \in \mathcal{L}$, such that $\mathcal{K} \perp \alpha = \mathcal{K} \perp \beta$. We will show that $\delta_{\tau}(\alpha) = \delta_{\tau}(\beta)$. Thus,

for all $A \subseteq \mathcal{K}$, A is not α -free iff A is not β -free (1) From Proposition A.4, we have that for all $\mathcal{K}' \subseteq \mathcal{K}$, $\alpha \in Cn(\mathcal{K})$ iff $\beta \in Cn(\mathcal{K})$. Therefore, from *relational uniformity*, we get that $\leq_{\alpha} = \leq_{\beta}$. This means that $\max_{\leq_{\alpha}}(\mathcal{P}(\mathcal{K})) = \max_{\leq_{\beta}}(\mathcal{P}(\mathcal{K}))$ which jointly with Eq. (1), implies that

$$\operatorname{resist}_{\leqslant_{lpha}}(\mathcal{K}) = \operatorname{resist}_{\leqslant_{eta}}(\mathcal{K}).$$

Thus, a formula is α -susceptible iff it is β -susceptible. This implies that $\delta_{\tau}(\alpha) = \delta_{\tau}(\beta)$. **Lemma A.5.** Given an α -hard \leq_{α} on a belief base \mathcal{K} . If φ is α -susceptible w.r.t \leq_{α} and $\{\varphi\} \leq_{\alpha} \{\psi\}$ then ψ is also α -susceptible.

Proof. Let φ be α -susceptible w.r.t \leqslant_{α} in \mathcal{K} , and ψ be a formula such that $\{\varphi\} \leq_{\alpha} \{\psi\}$. Let us suppose for contradiction that ψ is not α -susceptible. As φ is α -susceptible, we have $\{\varphi\} \notin \text{resist}_{\leq \alpha}(\mathcal{K})$, that is,

$$\{\varphi\} \in \max_{\leq \alpha} (\{A \subseteq \mathcal{K} \mid A \text{ is not } \alpha \text{-free}\}).$$

From the contrapositive of α -discernment we have that either $\{\varphi\} \not\leq_{\alpha} \{\psi\}$ or ψ is not α -free. Thus, as by hypothesis, $\{\varphi\} \leqslant_{\alpha} \{\psi\}$, we get ψ is not α -free. Thus, as $\{\varphi\}$ is maximal among all not α -free sets, we get from $\{\varphi\} \leq_{\alpha} \{\psi\}$ that ψ is also maximal among all not α -free sets. That is,

$$\{\psi\} \in \max_{\leq \alpha} (\{A \subseteq \mathcal{K} \mid A \text{ is not } \alpha \text{-free}\}).$$
(2)

By hypothesis, ψ is not α -susceptible. Thus, there is an $A \in \operatorname{resist}_{\leq \alpha}(\mathcal{K})$, such that $\psi \in A$. Thus,

$$A \notin \max_{\leq \alpha} (\{A \subseteq \mathcal{K} \mid A \text{ is not } \alpha \text{-free}\}).$$
(3)

Note that A is not not α -free, as ψ is not α -free. From isotonicity, $\{\psi\} \leq_{\alpha} A$ which implies from Eq. (2) that $A \in \max_{\leq_{\alpha}} (\{A \subseteq \mathcal{K} \mid A \text{ is not } \alpha\text{-free}\})$, which contradicts Eq. (3). Thus, ψ is α -susceptible.

Theorem 15. Every spalled kernel contraction is smooth.

Proof. Let δ_{τ} be an effacing on a belief base $\mathcal{K}, X \subseteq \mathcal{K}$ and $\varphi \in \delta_{\tau}(\alpha)$ such that $\varphi \in Cn(X)$. We will show that there is some $\psi \in X$ such that $\psi \in \delta_{\tau}(\alpha)$. From $\varphi \in$ Cn(X), we get that there is a $X' \in X \perp \varphi$. Let us fix such a X'. Thus, from isotonicity, we get $\{\varphi\} \leq_{\alpha} X'$, and from Lemma A.2, there is some $\psi \in X'$ such that $X' \leq_{\alpha} \{\psi\}$. From transitivity, we get $\{\varphi\} \leq_{\alpha} \{\psi\}$. Therefore, from Lemma A.5, ψ is also α -susceptible, which means that $\psi \in$ $\delta_{\tau}(\alpha).$

Lemma A.6. For every smooth incision function σ on a belief base \mathcal{K} . If $\mathcal{K}' \subseteq \mathcal{K}$ and $\mathcal{K}' \cap \sigma(\alpha) = \emptyset$ then $Cn(\mathcal{K}') \cap \sigma(\alpha) = \emptyset.$

Proof. Let $\mathcal{K}' \subseteq \mathcal{K}$ and $\mathcal{K}' \cap \sigma(\alpha) = \emptyset$. We have to show that for every $\varphi \in Cn(\mathcal{K}'), \varphi \notin \sigma(\alpha)$. Let $\varphi \in Cn(\mathcal{K}')$. As $\sigma(\alpha) \subseteq \mathcal{K}$, the case that $\varphi \notin \mathcal{K}$ is trivial. So we focus on Thus, from the contrapositie of smoothness, we have $\varphi \in \mathcal{K}.$ that $\mathcal{K}' \not\subseteq \mathcal{K}$ or $\varphi \notin Cn(\mathcal{K}')$ or $\varphi \notin \sigma(\alpha)$. By hypothesis, $\mathcal{K}' \subseteq \mathcal{K} \text{ and } \varphi \in Cn(\mathcal{K}').$ Thus, $\varphi \notin \sigma(\alpha)$.

Lemma 17. For every smooth incision function and α projection \leq_{α}^{σ} , if $B \cap \sigma(\alpha) = \emptyset$ and $A \leq_{\alpha}^{\sigma} B$ then $A \cap \sigma(\alpha) = \emptyset$.

Proof. Let us suppose for contradiction that $A \cap \sigma(\alpha) \neq \emptyset$. As \leq_{α}^{σ} is the least relation satisfying the condition (1)-(4) from Definition 16, we get that at least one of the following condition must be satisfied (we will get a contradiction from each of them):

- 1. $B \cap \sigma(\alpha) \neq \emptyset$, which is contradiction.
- 2. $A \subseteq Cn(B)$. From hypothesis, $A \cap \sigma(\alpha) \neq \emptyset$ which means that there is some $\varphi \in A$ such that $\varphi \in \sigma(\alpha)$. As σ is smooth and $B \cap \sigma(\alpha) = \emptyset$, we get from Lemma A.6 that $Cn(B) \cap \sigma(\alpha) = \emptyset$. Thus, as $A \subseteq Cn(B)$, we get that $\varphi \in Cn(B)$ which implies $Cn(B) \cap \sigma(\alpha) \neq \emptyset$. A contradiction.
- 3. A is α -free which is a contradiction, as by hypothesis $A \cap$ $\sigma(\alpha) \neq \emptyset.$
- 4. both A and B are not α -free and $(A \cup B) \cap \sigma(\alpha) = \emptyset$. However, this implies that $A \cap \sigma(\alpha) = \emptyset$ which is a contradiction.

Proposition 18. If an incision function σ is smooth, then every α -projection of σ satisfies: isotonicity, α -maximality, α -discernment, conjunctiveness, and transitivity.

Proof sketch. Let \leq_{α}^{σ} *be an* α *-projection of a smooth in*cision function σ . Note that α -maximality follows directly from condition (1), while isotonicity follows from condition (2). Item 3 puts all α -free sets as the most preferable ones, that is, the minimal ones. This jointly with Lemma 17 and Item 1 implies that each set that is not α -free is strictly less preferable then all α -free sets. Therefore, α -discernment is satisfied.

- conjunctiveness: let $A, B \in \mathcal{P}(\mathcal{K})$. If both are are α free, then $A \cup B$ is also α -free, which follows from (3) that $A \cup B \leq_{\alpha}^{\sigma} A$. Let us proceed then to the case that one of them is not α -free. Without loss of generality, let us assume that A is not α -free. As A is not α -free, we get that $A \cup B$ is also not α -free. If $(A \cup B) \cap \sigma(\alpha) \neq \emptyset$ then either $A \cap \sigma(\alpha) \neq \emptyset$ or $B \cap \sigma(\alpha) \neq \emptyset$. In either *case, it follows from condition (1) that* $A \cup B \leq_{\alpha}^{\sigma} A$ *or* $A \cup B \leq_{\alpha}^{\sigma} B$. So, only the case $(A \cup B) \cap \sigma(\alpha) = \emptyset$ remains. Thus, as both A and $A \cup B$ are not α -free, we get from condition (4) that $A \cup B \leq_{\alpha}^{\sigma} A$.
- transitivity: let $A \leq_{\alpha}^{\sigma} B$ and $B \leq_{\alpha}^{\sigma} C$. We will show that $A \leq_{\alpha}^{\sigma} C$. If $C \cap \sigma(\alpha) \neq \emptyset$ or A is α -free then from condition (1) and (3) we get that $A \leq_{\alpha}^{\sigma} C$. Let us proceed then to the case that A is not α -free and $C \cap \sigma(\alpha) = \emptyset$. As $B \leq_{\alpha}^{\sigma} C$ and $C \cap \sigma(\alpha) = \emptyset$, we get from Lemma 17 that $B \cap \sigma(\alpha) = \emptyset$. This implies, also from Lemma 17, that $A \cap \sigma(\alpha) = \emptyset$. Thus, $(A \cup C) \cap \sigma(\alpha) = \emptyset$, which implies from condition (4) that $A \leq_{\alpha}^{\sigma} C$

Proof. Let σ be a smooth incision function on a belief base \mathcal{K} , and \mathcal{T}_{σ} its shadowing. We need to show that \mathcal{T}_{σ} satisfy uniformity, and that for every formula α , the α projection \leq_{α}^{σ} satisfy: α -maximality, α -discernment, conjunctiveness, isotonicity and transitivity. Note that α -maximality follows directly from condition (1), while *isotonicity* follows from condition (2).

• α -discernment: Let us suppose for contradiction that there are formulae $\varphi, \psi \in \mathcal{K}$ such that φ is α -free, $\{\psi\} \leqslant_{\alpha}^{\sigma} \{\varphi\}$ but that ψ is not α -free. As $\leqslant_{\alpha}^{\sigma}$ is the least set satisfying conditions (1)-(4) from Definition 16, then one of the following conditions hold (we will get a contradiction for each of them):

- 1. $\{\varphi\} \cap \sigma(\alpha) \neq \emptyset$. This is a contradiction, as φ is α -free.
- 2. $Cn(\psi) \subseteq Cn(\varphi)$. Thus, as ψ is not α -free, there is a $X \in \mathcal{K} \perp \!\!\!\perp \alpha$ such that $\psi \in X$. Let us fix such a X, and let $X' = X \setminus \{\psi\}$. As X is an α -kernel, it follows that $\alpha \notin Cn(X')$. Thus, from monotonicity

$$Cn(X') \cup Cn(\varphi) \subseteq Cn(X' \cup \{\varphi\})$$

From hypothesis, $Cn(\psi) \subseteq Cn(\varphi)$. Thus,

$$Cn(X') \cup Cn(\psi) \subseteq Cn(X' \cup \{\varphi\})$$

From inclusion, $X' \subseteq Cn(X')$, and $\psi \in Cn(\psi)$. Thus,

$$X' \cup \{\psi\} \subseteq Cn(X' \cup \{\varphi\}),$$

which implies from monotonicity that

$$Cn(X' \cup \{\psi\}) \subseteq Cn(Cn(X' \cup \{\varphi\})),$$

and from idempotency,

$$Cn(X' \cup \{\psi\}) \subseteq Cn(X' \cup \{\varphi\}).$$

Recall from above that $X = X' \cup \{\psi\}$, and $\alpha \in Cn(X)$, as X is an α -kernel. Therefore,

$$\alpha \in Cn(X' \cup \{\varphi\}).$$

Thus, there is some $Y \in (X' \cup \{\varphi\}) \perp \alpha$. Thus, $\varphi \in Y$, as $\alpha \notin Cn(X')$. This means that φ is not α -free which is a contradiction.

- 3. $\{\psi\}$ is α -free, which contradicts our hypothesis.
- 4. both φ and ψ are not $\alpha\text{-free}$ which is also a contradiction.

So we conclude that \leq_{α}^{σ} indeed satisfies α -discernment.

- conjunctiveness: let A, B ∈ P(K). If both are α-free, then A ∪ B is also α-free, which implies from (3) that A ∪ B ≤^σ_α A. Let us proceed then to the case that one of them is not α-free. Without loss of generality, let us assume that A is not α-free. As A is not α-free, we get that A ∪ B is also not α-free. If (A ∪ B) ∩ σ(α) ≠ Ø then either A ∩ σ(α) ≠ Ø or B ∩ σ(α) ≠ Ø. In either case, it follows from condition (1) that A ∪ B ≤^σ_α A or A ∪ B ≤^σ_α B. So, only the case (A ∪ B) ∩ σ(α) = Ø remains. Thus, as both A and A ∪ B are not α-free, we get from condition (4) that A ∪ B ≤^σ_α A.
- *transitivity:* let $A \leq_{\alpha}^{\sigma} B$ and $B \leq_{\alpha}^{\sigma} C$. We will show that $A \leq_{\alpha}^{\sigma} C$. If $C \cap \sigma(\alpha) \neq \emptyset$ or A is α -free then from condition (1) and (3) we get that $A \leq_{\alpha}^{\sigma} C$. Let us proceed then to the case that A is not α -free and $C \cap \sigma(\alpha) = \emptyset$. As $B \leq_{\alpha}^{\sigma} C$ and $C \cap \sigma(\alpha) = \emptyset$, we get from Lemma 17 that $B \cap \sigma(\alpha) = \emptyset$. This implies, also from Lemma 17, that $A \cap \sigma(\alpha) = \emptyset$. Thus, $(A \cup C) \cap \sigma(\alpha) = \emptyset$, which implies from condition (4) that $A \leq_{\alpha}^{\sigma} C$

Observation 19. Let σ be an incision function on a belief base \mathcal{K} , and let α and β be two formulae. If for all $\mathcal{K}' \subseteq \mathcal{K}$, it holds that $\alpha \in Cn(\mathcal{K}')$ iff $\beta \in Cn(\mathcal{K}')$, then $\leq_{\alpha}^{\sigma} \leq_{\beta}^{\sigma}$. *Proof.* Let $\alpha, \beta \in \mathcal{K}$ be formulae such that for all $\mathcal{K}' \subseteq \mathcal{K}$, $\alpha \in Cn(\mathcal{K}')$ iff $\beta \in Cn(\mathcal{K}')$. As σ is an incision function, we have from condition (3) of Definition 3 that $\sigma(\alpha) = \sigma(\beta)$, and from Proposition A.4 we have $\mathcal{K} \perp\!\!\!\perp \alpha = \mathcal{K} \perp\!\!\!\perp \beta$. We will show that $A \leq_{\alpha}^{\sigma} B$ iff $A \leq_{\beta}^{\sigma} B$.

- " \Rightarrow " Let $A \leq_{\alpha}^{\sigma} B$. As \leq_{α}^{σ} is the least relation satisfying the condition (1)-(4) from Definition 16, we get that at least one of the condition (1) to (4) must be satisfied:
- B ∩ σ(α) ≠ Ø. Thus, as σ(α) = σ(β), we also have that B ∩ σ(β) ≠ Ø. Thus, from the same condition (1) from Definition 16, we get A ≤^σ_β B.
- A ⊆ Cn(B). Therefore, from the same condition (2) from Definition 16, we get A ≤^σ_β B.
- A is α-free. From above, we have that K⊥⊥ α = K⊥⊥ β, which means that a set X is α-free iff X is β-free. Therefore, A is β-free which implies from the same condition (3) in Definition 16 that A ≤^σ_β B.
- both A and B are not α-free and (A ∪ B) ∩ σ(α) ≠ Ø. From above, we have that K⊥⊥ α = K⊥⊥ β, which means that a set X is α-free iff X is β-free. Therefore, both A and B are not β-free. From above, σ(α) = σ(β) which implies (A ∪ B) ∩ σ(β) ≠ Ø. Thus, from the same condition (4) in Definition 16 we have that A ≤^σ_β B.

" \Leftarrow " Analogous to direction " \Rightarrow ".

Corollary 21. If an incision function is smooth, then its shadowing is a spalling.

Proof. Let σ be a smooth incision function, and \mathcal{T}_{σ} be its shadowing. From Proposition 18, each α -projection \leq_{α}^{σ} satisfies transitivity, isotonicity, α -maximality, α -discernment, and conjunctiveness, while from Observation 19 it also satisfies relational uniformity. This means that \leq_{α}^{σ} is an α -shard. Therefore, \mathcal{T}_{σ} is a spalling.

Proposition 22. If σ is a smooth incision function on a belief base \mathcal{K} , then for all formula α :

 $\sigma(\alpha) = \{ \varphi \in \mathcal{K} \mid \varphi \text{ is } \alpha \text{-susceptible modulo } \leqslant_{\alpha}^{\sigma} \}.$

Proof. Recall that a formula φ in \mathcal{K} is α -susceptible modulo a relation \leq_{α}^{σ} iff $\varphi \in \bigcup \mathcal{K} \amalg \alpha$ and there is no resistant set $A \in \text{resist}_{\leq_{\alpha}^{\sigma}}(\bigcup \mathcal{K} \amalg \alpha)$ such that $\varphi \in A$.

" \Rightarrow " It is easier to prove by its contrapositive. Let us assume that $\varphi \notin \sigma(\alpha)$, and we will show that φ is not α -susceptible. The case that φ is α -free is trivial. So we focus on the case $\varphi \in \bigcup \mathcal{K} \amalg \alpha$. Thus, there is some $A \in \mathcal{K} \amalg \alpha$ such that $\varphi \in A$. Let $A' = A \setminus \sigma(\alpha)$. As σ is an incision function, we have that $A \cap \sigma(\alpha) \neq \emptyset$. Thus, from the contrapositive of Lemma 17 (on the statement of that lemma let B stand for A') that $A \not\leq_{\alpha}^{\sigma} A'$ or $A' \cap \sigma(\alpha) \neq \emptyset$. However, as $A' = A \setminus \sigma(\alpha)$, we have that $A' \cap \sigma(\alpha) = \emptyset$. Therefore, $A \not\leq_{\alpha}^{\sigma} A'$. From condition (1), at Definition 16, we get that $A' \leq_{\alpha}^{\sigma} A$. Thus, A' is a resistant set which implies that φ is not α -susceptible, as $\varphi \in A'$. " \Leftarrow " Let $\varphi \in \sigma(\alpha)$. Then, $\varphi \in \bigcup \mathcal{K} \amalg \alpha$, and it follows from condition (1) at Definition 16 that every set $A \in \mathcal{P}(\mathcal{K})$ that has φ is maximal, that is, $A \in max_{\leq_{\alpha}^{\sigma}}(\mathcal{P}(\mathcal{K}))$. Therefore, φ is α -susceptible.

Theorem 23. A kernel contraction is smooth iff its a spalled kernel contraction.

Proof. From Theorem 15, every spalled kernel contraction is a smooth kernel contraction. So we are left to prove direction " \Rightarrow ". Let $\dot{-}_{\sigma}$ be a smooth kernel contraction on a belief base \mathcal{K} . To show that $\dot{-}_{\sigma}$ is a spalled kernel contraction, it suffices to show that there exist an effacing δ_{τ} such that $\sigma(\alpha) = \delta_{\tau}(\alpha)$, for all formula α . Consider the shadowing \mathcal{T}_{σ} of σ . From Corollary 21, \mathcal{T}_{σ} is a spalling. Let us take then the effacing $\delta_{\mathcal{T}_{\sigma}}$. Recall from the definition of shadowing (Definition 20) that $\mathcal{T}_{\sigma}(\alpha) = \leq_{\alpha}^{\sigma}$. By definition of effacing,

$$\delta_{\mathcal{T}_{\sigma}}(\alpha) = \{ \varphi \in \mathcal{K} \mid \varphi \text{ is } \alpha \text{-susceptible modulo } \leqslant_{\alpha}^{\sigma} \}$$

Moreover, from Proposition 22,

$$\sigma(\alpha) = \{ \varphi \in \mathcal{K} \mid \varphi \text{ is } \alpha \text{-susceptible modulo } \leq_{\alpha}^{\sigma} \}.$$

Therefore, $\delta_{\mathcal{T}_{\sigma}}(\alpha) = \sigma(\alpha)$, for all formula α . Thus, $\dot{-}_{\sigma}$ is a spalled kernel contraction.

Proposition 26. If a kernel contraction function $\dot{-}_{\sigma}$ satisfies relevance then σ satisfies symmetry of removal.

Proof. Let $\dot{-}_{\sigma}$ be a kernel contraction function, on a belief base \mathcal{K} , that satisfies relevance. Let α be a formula, and $A, B \subseteq \mathcal{K}$ be α -concordant sets. To show that σ satisfies symmetry of removal, we have to show that: (i) $A \cap \sigma(\alpha) \neq \emptyset$ iff (ii) $B \cap \sigma(\alpha) \neq \emptyset$.

"(i) \Rightarrow (ii)". Let us suppose for contradiction that $A \cap \sigma(\alpha) \neq \emptyset$ but $B \cap \sigma(\alpha) = \emptyset$. Thus, there is some $\varphi \in A$, such that $\varphi \in \sigma(\alpha)$. From relevance, there is a $\mathcal{K}' \subseteq \mathcal{K}$ such that $\mathcal{K} \doteq_{\sigma} \alpha \subseteq \mathcal{K}'$ and

$$\alpha \notin Cn(\mathcal{K}')$$
 and $\alpha \in Cn(\mathcal{K}' \cup \{\varphi\})$

As $\varphi \in A$, we have $\mathcal{K}' \cup \{\varphi\} \subseteq A \cup \mathcal{K}'$. Thus, as Cn is monotonic, we have $Cn(\mathcal{K}' \cup \{\varphi\}) \subseteq Cn(A \cup \mathcal{K}')$. Thus, as from above $\alpha \in Cn(\mathcal{K}' \cup \{\varphi\})$, we get that $\alpha \in Cn(A \cup \mathcal{K}')$. This means \mathcal{K}' is an α -completion of A, that is

$$\mathcal{K}' \in com_{\mathcal{K}}(A, \alpha)$$

As $B \cap \sigma(\alpha) = \emptyset$, we have $B \subseteq \mathcal{K} \doteq_{\sigma} \alpha$, which implies that $B \subseteq \mathcal{K}'$. Therefore, $B \cup \mathcal{K}' = \mathcal{K}'$ which means $Cn(\mathcal{K}') = Cn(B \cup \mathcal{K}')$. Thus, as $\alpha \notin Cn(\mathcal{K}')$, we get $\alpha \notin Cn(B \cup \mathcal{K}')$. This means that $\mathcal{K}' \notin com_{\mathcal{K}}(B, \alpha)$. Therefore, A and B are not α -concordant which contradicts our hypothesis. Thus, $B \cap \sigma(\alpha) \neq \emptyset$.

"(ii) \Rightarrow (i)". Analogous to "(i) \Rightarrow (ii)".

Lemma A.7. For every belief base \mathcal{K} , and sets $A, B \subseteq \mathcal{K}$, if $A \subseteq B$ then $com_{\mathcal{K}}(A, \alpha) \subseteq com_{\mathcal{K}}(B, \alpha)$.

Proof. Let $A \subseteq B$, and $X \in com_{\mathcal{K}}(A, \alpha)$. Then, $\alpha \in Cn(X \cup A)$. As $A \subseteq B$ we have that $X \cup A \subseteq X \cup B$ which from monotonicity of Cn implies $Cn(X \cup A) \subseteq Cn(X \cup B)$. Thus, as $\alpha \in Cn(X \cup A)$, we get that $\alpha \in Cn(X \cup B)$. Thus, $X \in com_{\mathcal{K}}(B, \alpha)$.

Proposition 28. If an incision function σ satisfies smoothness and symmetry of removal then the smooth kernel contraction function $\dot{-}_{\sigma}$ satisfies relevance.

Proof. Let $\dot{-}_{\sigma}$ be a smooth kernel contraction on a belief base \mathcal{K} , and formulae α and β such that $\beta \in \mathcal{K} \setminus (\mathcal{K} \div_{\sigma} \alpha)$. To prove relevance, we will show that there is a belief base \mathcal{K}' such that (a) $\mathcal{K} \div_{\sigma} \alpha \subseteq \mathcal{K}' \subseteq \mathcal{K}$, (b) $\alpha \notin Cn(\mathcal{K}')$, and (c) $\alpha \in Cn(\mathcal{K}' \cup \{\beta\})$.

From $\beta \in \mathcal{K} \setminus (\mathcal{K} \stackrel{\cdot}{\rightarrow} \alpha)$, we get that $\beta \in \sigma(\alpha)$. Let

$$Y = (\mathcal{K} \div_{\sigma} \alpha) \cup \{\beta\}.$$

Note $\mathcal{K} \doteq_{\sigma} \alpha \cap \sigma(\alpha) = \emptyset$, but $Y \cap \sigma(\alpha) \neq \emptyset$. Thus, from the contrapositive of symmetry of removal, we get that $\mathcal{K} \doteq_{\sigma} \alpha$ and Y are not α -concordant. As $\mathcal{K} \doteq_{\tau} \alpha \subseteq Y$ we have from Lemma A.7 that $com_{\mathcal{K}}(\mathcal{K} \doteq_{\sigma} \alpha, \alpha) \subseteq com_{\mathcal{K}}(Y, \alpha)$. Moreover, as $\mathcal{K} \doteq_{\sigma} \alpha$ and Y are not α -concordant, we have that $com_{\mathcal{K}}(\mathcal{K} \doteq_{\sigma} \alpha, \alpha) \neq com_{\mathcal{K}}(Y, \alpha)$. Therefore, $com_{\mathcal{K}}(\mathcal{K} \doteq_{\sigma} \alpha, \alpha) \subset com_{\mathcal{K}}(Y, \alpha)$, which implies that there is some $H \in com_{\mathcal{K}}(Y, \alpha)$, such that $H \notin com_{\mathcal{K}}(\mathcal{K} \doteq_{\sigma} \alpha, \alpha)$. Thus,

$$\alpha \in Cn(Y \cup H)$$
, and $\alpha \notin Cn(\mathcal{K} \div_{\tau} \alpha \cup H)$

Let us fix such a *H*. Thus, as $Y = (\mathcal{K} \doteq_{\sigma} \alpha) \cup \{\beta\}$, we get

$$\alpha \in Cn((\mathcal{K} \div_{\sigma} \alpha) \cup \{\beta\} \cup H)$$

Let us make $\mathcal{K}' = (\mathcal{K} \div_{\sigma} \alpha) \cup H$. Thus,

(c)
$$\alpha \in Cn(\mathcal{K}' \cup \{\beta\})$$
, and (b) $\alpha \notin Cn(\mathcal{K}')$.

As
$$\mathcal{K} \doteq_{\tau} \alpha \subseteq \mathcal{K}$$
 and $H \subseteq \mathcal{K}$: (a) $\mathcal{K} \doteq_{\tau} \alpha \subseteq \mathcal{K}' \subseteq \mathcal{K}$. \Box

Lemma A.8. For every belief base \mathcal{K} and sets $A, X \subseteq \mathcal{K}$, if A is α -free and $X \in \mathcal{K} \perp \alpha$ but $A \cap X = \emptyset$, then $\alpha \notin Cn(Y \cup A)$ for all $Y \subset X$.

Proof. Let us suppose for contradiction that A is α -free and $X \in \mathcal{K} \perp\!\!\!\perp \alpha$ but $A \cap X = \emptyset$, but there is a $Y \subset X$ such that $\alpha \in Cn(Y \cup A)$. Thus, there is some $Y' \in (Y \cup A) \perp\!\!\!\perp \alpha$. Thus,

$$\alpha \in Cn(Y')$$

As $Y' \subseteq Y \cup A$ and $Y \cup A \subseteq \mathcal{K}$, we have $Y' \subseteq \mathcal{K}$ which implies $Y' \in \mathcal{K} \sqcup \alpha$. Thus, as A is α -free, we get that $A \cap Y' = \emptyset$. Therefore, as $Y' \subseteq Y \cup A$, we get $Y' \subseteq Y$ which implies $Cn(Y') \subseteq Cn(Y)$. However, as X is an α kernel, and $Y \subset X$, we have that $\alpha \notin Cn(Y)$. This implies that $\alpha \notin Cn(Y')$, which is a contradiction.

Observation A.9. If two sets $A, B \subseteq \mathcal{K}$ are α -concordant then either (i) both A and B are α -free or (ii) both A and B are not α -free.

Proof. Let us suppose for contradiction that for some belief base \mathcal{K} and formula α , there are sets $A, B \subseteq \mathcal{K}$ such that Aand B are α -concordant, but conditions (i) and (ii) are not satisfied. Without loss of generality, let us assume that Ais α -free, and B is not α -free. Then, there is some $X \in \mathcal{K} \perp \alpha$, such that $B \cap X \neq \emptyset$. Let $X' = X \setminus B$. Note that $X' \subset X$ and $\alpha \in Cn(X' \cup B)$. Thus $X' \in com_{\mathcal{K}}(B, \alpha)$. As A is α -free, we have that $\alpha \notin Cn(A)$ and $X \cap A = \emptyset$ which implies Lemma A.8 that $\alpha \notin Cn(X' \cup A)$. Thus, $X' \notin com_{\mathcal{K}}(A, \alpha)$. But then, as A and B are α -concordant, we get that $X' \notin com_{\mathcal{K}}(B, \alpha)$ which is a contradiction. \Box

Proposition A.10. *Every mirrored effacing satisfies symmetry of removal.*

Proof. Let us suppose for contradiction that there is a mirrored effacing δ_{τ} , defined on some belief base \mathcal{K} , that does not satisfy symmetry of removal. Thus there are α -concordant sets $A, B \subseteq \mathcal{K}$ such that it does not hold that $A \cap \delta_{\tau}(\alpha) \neq \emptyset$ iff $B \cap \delta_{\tau}(\alpha) \neq \emptyset$. Without loss of generality, let us assume that $A \cap \delta_{\tau}(\alpha) = \emptyset$ and $B \cap \delta_{\tau}(\alpha) \neq \emptyset$. This means that A is α -resistant modulo \leq_{α}^{τ} while B is not α -resistant modulo \leq_{α}^{τ} . From Observation A.9, either (i) both A and B are α -free or (ii) both A and B are not α -free. For case (i), both A and B are by definition α -resistant, which is a contradiction. So we focus on case (ii). As A is resistant, but not α -free, it follows that there is an $X \subseteq \mathcal{K}$ such that $A \leq_{\alpha}^{\tau} X$ and $X \not\leq_{\alpha}^{\tau} A$. Let us fix such an X. Let $Y \in \mathcal{K} \perp \alpha$. Thus, from α -maximality, we get that $X \leq_{\alpha}^{\tau} B$. From transitivity, we have that $X \leq_{\alpha}^{\tau} B$ which from concordant-mirroring implies that $X \leq_{\alpha}^{\tau} A$, which is a contradiction.

Theorem 32. Mirrored effacings satisfy symmetry of removal, and every mirrored kernel contraction satisfies relevance.

Proof. We have to prove: that (1) Every mirrored effacing satisfies symmetry of removal; and (2) very mirrored kernel contraction satisfies relevance. Item (1) is Proposition A.10. So we only need to prove item (2). Let $\dot{-}_{\tau}$ be a mirrored kernel contraction, and δ_{τ} its mirrored effacing. Thus, from Proposition A.10, δ_{τ} satisfies the principle of symmetry of removal. From Theorem 15, every effacing satisfies smoothness. Thus, from Proposition 28, we have $\dot{-}_{\tau}$ satisfies relevance.

Proposition 33. If a smooth kernel contraction function $\dot{-}_{\sigma}$ satisfies relevance then the shadowing of σ is mirrored.

Proof. Let $\dot{-}_{\sigma}$ be a smooth kernel contraction satisfying relevance, and \mathcal{T}_{σ} be the shadowing of σ . To show that \mathcal{T}_{σ} is mirrored we need to show that $\leqslant_{\alpha}^{\sigma}$ satisfies concordantmirorring for all formula α . Let α be a formula, and let $A, B \subseteq \mathcal{K}$ be α -concordant sets, and $X \leqslant_{\alpha}^{\sigma} A$. We will show that $X \leqslant_{\alpha}^{\sigma} B$. As $\dot{-}_{\tau}$ satisfies relevance, it follows from Proposition 26 that $\dot{-}_{\tau}$ satisfies the principle of symmetry of removal. So, $A \cap \sigma(\alpha) \neq \emptyset$ iff $B \cap \sigma(\alpha) \neq \emptyset$. We have two cases: either (a) $A \cap \sigma(\alpha) \neq \emptyset$ or (b) $A \cap \sigma(\alpha) = \emptyset$. (a) $A \cap \sigma(\alpha) \neq \emptyset$. Thus, from symmetry of removal, $A \cap \sigma(\alpha) \neq \emptyset$. Thus, from Item 1 at Definition 16, we have $X \leq_{\alpha}^{\sigma} B$.

(b) $A \cap \sigma(\alpha) = \emptyset$. Thus, from symmetry of removal, $A \cap \sigma(\alpha) = \emptyset$, which implies that $(A \cup B) \cap \sigma(\alpha) = \emptyset$. From Observation A.9 either: (i) both A and B are α -free, or (ii) both are not α -free. For case (i) we get from Item 3 at Definition 16 that $A \leq_{\alpha}^{\sigma} B$; while for case (ii) we get from Item 4 at Definition 16, that $A \leq_{\alpha}^{\sigma} B$. So, in either case $A \leq_{\alpha}^{\sigma} B$. From hypothesis $X \leq_{\alpha}^{\sigma} A$, which from transitivity of \leq_{α}^{σ} implies that $X \leq_{\alpha}^{\sigma} B$.

Theorem 34. A smooth kernel contraction satisfies relevance iff its a mirrored kernel contraction.

Proof. From Theorem 32, every mirrored kernel contraction satisfies relevance. For the other direction, let $\dot{-}_{\sigma}$ be a smooth kernel contraction function satisfying relevance.

To show that $\dot{-}_{\sigma}$ is a mirrored kernel contraction, it suffices to show that there exist an effacing δ_{τ} such that (i) τ is mirrored, and (ii) $\sigma(\alpha) = \delta_{\tau}(\alpha)$, for all formula α . Consider the shadowing \mathcal{T}_{σ} of σ . From Corollary 21, \mathcal{T}_{σ} is a spalling. Let us take then the effacing $\delta_{\mathcal{T}_{\sigma}}$. From Proposition 33, \mathcal{T}_{σ} is mirrored (i). For condition (ii), recall from the definition of shadowing (Definition 20) that $\mathcal{T}_{\sigma}(\alpha) = \leq_{\alpha}^{\sigma}$. By definition of effacing,

$$\delta_{\mathcal{T}_{\sigma}}(\alpha) = \{\varphi \in \mathcal{K} \mid \varphi \text{ is } \alpha \text{-susceptible modulo } \leq_{\alpha}^{\sigma}\}$$

Moreover, from Proposition 22,

 $\sigma(\alpha) = \{ \varphi \in \mathcal{K} \mid \varphi \text{ is } \alpha \text{-susceptible modulo } \leqslant^{\sigma}_{\alpha} \}.$

Therefore, $\delta_{\mathcal{T}_{\sigma}}(\alpha) = \sigma(\alpha)$, for all formula α . Thus, $\dot{-}_{\sigma}$ is a mirroed kernel contraction.