A Proofs of Selected Results

Proposition 4. Formula-based incision functions and stan-
dard incision functions are interchangeable, that is,

1. for all standard incision function o there is a formula-
based incision function o’ such that c(K 1L ) = o' (),
forall oy

2. for all formula-based incision function o’ there is a stan-
dard incision function o such that o (K 1L ) = o'(a), for
all o;

Proof. Let us fix an arbitrary belief base /.

1. Let o be a standard incision function on XC, we construct
the following formula-based function o”:

(o) =o(K1 a).

It is clear that o and ¢’ coincide and that ¢’ is a well-
defined function.
We still need to prove that ¢’ is indeed a formula-based
function. Satisfaction of conditions (1) and (2) in Defi-
nition 3 follows respectively from conditions (1) and (2)
in Definition 2. For item (3), note that if two formulae
a and 3 have the same set of kernels, then o(K 1L o) =
o (KL B) which implies o’/ () = o/ (5).

2. Let o’ be a formula-based incision function on K, we con-
struct the following standard-incision function o'

o(X) = o'(a), for some o € L, such that X = K 1L a.

We have to show three things: (a) o is a well-defined
function, (2) o is a standard-incision function, and (c)
oKL a) = o'(a), for all « € L. For item (a), let
X € C(K). Thus, X = K1L 8, for some 8 € L. This
concludes the proof that o is a well-defined function. We
proceed to show that o is a standard incision-function (b)
and that o (K 1L o) = o/ («), forall @« € L (¢). Let € L.
From construction

oK1l a)=0d'(8),
for some 5 € L such that
Kla=Klp.

Let us fix such a 3. To prove that o is indeed a standard-
incision function we have to show that items (1) and (2)
from Definition 2 are satisfied:
(1) we will show that (K1 o) C |JK1L . From
item (1) at Definition 3, we get that o’ () C |J 1L S.
Thus, as K1l o = K1 g and o(K L o) = o'(5), we
geto(Klla) C UKL a.
(2) let X € K1L « such that X # (). We will show that
XNo(Kl a) # 0. As K1L a = K1L 3, we get that
X € KL B. Thus, from item (2) at Definition 3, we
get that X No’(B) # (. Thus, as ¢’(3) = o(KLL ),
we get that X N o (K1l o) # 0.
This concludes the proof that ¢ is a standard-incision
function (b). We proceed to show (c) o(K 1L ) = o’(«).
From condition (3) of Definition 3, we have that ¢’ (a) =
o’(B). This jointly with o (KL o) = ¢’ (8) implies that
oKl a)=o'(a). O

Theorem 7. If Cn is Tarskian and satisfies compactness,
then a contraction function satisfies success, inclusion,
vacuity, uniformity, core-retainment, and relative-closure iff
it is a smooth kernel contraction function.

Proof. Let Cn be a Tarskian consequence operator satisfy-
ing compactness.

“=" Let — be a contraction function, defined on a be-
lief base /C, satisfying success, inclusion, vacuity, uni-
formity, core-retainment, and relative-closure. We have
from Theorem 6 that — corresponds to a kernel contrac-
tion function . To complete the proof, we need to show
that o is smooth. Let a, 0 € £ and K’ C K such that
v € Cn(K') and ¢ € o(a). Thus, ¢ € K. We will show
that K’ N o(a) # 0. Let us suppose, for contradiction,
that X' No(a) = (. Thus, K’ C K =, «, which implies
from monotonicty that ¢ € Cn(K ~, o). As =, satisfies
relative-closure, we have that ¢ € K —, a. This implies
that ¢ ¢ o(a) which is a contradiction. Hence, o satisfies
smoothness.

“<" let —, be a smooth contraction function, defined on
a belief base K. We already have from Theorem 6 that
in the presence of monotonicity and compactness, kernel
contractions are characterised by the first five rationality
postulates. So, we only need to show that —, satisfies
relative-closure. Let us suppose for contradiction that it
does not satisfy relative-closure. Thus, there are formulae
o and B such that 8 € K, § € Cn(K ~, a) but 5 ¢
K =, «. Recall from definition of contraction functions
that £ —, a = K \ o(«). Therefore,

(K=,a)No(a)="0,

K =~y a C Kand S € o(a). By hypothesis 5 ¢ K -, a.
Thus, from smoothness, we have (K ~, «) No(a) # ()
which is a contradiction. Hence, we conclude that —
satisfies relative-closure.

i

O

Observation A.1. If Cn is compact than every a-kernel is
finite.

Proof. Let K be a belief base, and and a-kernel A € 1l «,
for some formula . As A is an a-kernel, it entails «. Thus,
As C'n is compact, there is a A’ C A such that « € Cn(A4").
However, as A is an a-kernel, there is no proper subset of A
that entails «, which means that A ¢ A. Therefore, A = A’
which means that A is finite. O

Lemma A.2. Given an a-shard <., on a belief base K such
that o € Cn(K). For every X C K, if X is finite and non-
empty, then there is some ¢ € X such that X <, {¢}.

Proof. The proof follows by induction on the site of X.

Base: | X| = 1. Thus, X = {p}, for some ¢ € L. As Cn
satisfies inclusion, we have that {¢} C Cn({¢}). Thus,
from isotonicity, {p} <o {¢}, thatis, X <, {¢}.

Induction Hypothesis (IH): if Y C K and |Y'| < | X| then
there is some ¢ € Y such that Y <,, {¢}



Induction Step: |X| > 1. Then X = Y UY", for some
Y,Y’' C X suchthat |[Y| > 1,[Y'| > 1,and Y NY’ = 0.
Note that [Y| < |X]|, |[Y'] < |X|. From conjunctive-
ness, X <, Y or X <, Y’. Without loss of generality,
let assume the X <, Y. Thus, from IH, that there is
some ¢ € Ysuch that Y <, {¢}. Thus, from transitivity,
X <o {p},and p € X.

O

Lemma A.3. Given an a-shard <, on a belief base K
such that « € Cn(K). If {¢} € maxg, (P(K)) then
A € max¢_ (P(K)), forall A C K such that ¢ € A.

Proof. Let <,, be an a-shard on a belief base X such that
a € Cn(K). Moreover, let ¢ € max¢_(P(K)),anda A C
K such that ¢ € A. From isotonicity, {¢} <. A. Therefore,
as {¢} is maximal, we get that A <,, {} which means that
A € mazg (P(K)). O

Proposition 11. If <, is an a-shard on a belief base IC,

1. every a-susceptible formula w.r.t <, is not a-free;

2. « is not tautological and oo € Cn(K) iff there is an a-
susceptible formula in IC.

Proof. Let <, be an a-shard on a belief base K.

1. let ¢ be an a-susceptible formula modulo an a-shard <.
Thus, ¢ does not appear in any of the resistant sets. By
definition, the set of all a-free formulae is resistant. Thus,
¢ does not appear in such a set, which means ¢ is not a-
free.

2. the direction “<" follows from item 1, because an «-
susceptible formula ¢ necessarily is not a-free which
implies that there is some a-kernel A € K1L « such
¢ € A. Therefore, « € Cn(K). For the direction “=",
from o € Cn(K) we get there is at least one «a-kernel
X € K1 «, and from compactness we know that all
of them are finite. Let us fix an a-kernel X € K1l a.
From a-maximality, we get that X is maximal, and from
Lemma A.2, there is a ¢ € X such that X <, {¢}. Let
us fix such a ¢. Therefore, as X is maximal, we get that
{¢} is also maximal. This implies from Lemma A.3, that
every set in which ¢ appears is also maximal. Therefore,
every set in which ¢ appears is not resistant. This means
that ¢ is a-susceptible.

O

Proposition A.4. For every belief base K, and formulae o
and B. The following statements are equivalent:

1. Kla=K1Lp;

2. forevery K' C K/, a € Cn(K') iff § € Cn(K').

Proof. Let K be a belief base and « and /3 be formulae.

* “(1) = (2)”. Let us assume that 1l o = 1L 3, and let
K’ C K. We have to show that (a) if « € Cn(K’) then
B € Cn(K'); and (b) if 8 € Cn(K') then o € Cn(K').

(a) let & € Cn(K’). Then there is some X € K/ 1L a.
Thus, as X C K’ and K’ C K, we get that X C K,
which means X € KL a. From hypothesis, L1 o =
IC 1L B, which implies that X € IC_1L 5. This means that
B € Cn(X). Thus, as X C K’, and Cn is monotonic,
we get that 5 € Cn(K').

(b) if 8 € Cn(K’). Then there is some X € K'1L .
Thus, as X C K’ and K’ C K, we get that X C K,
which means X € KL 8. From hypothesis, 1 o =
KC1L 8, which implies that X € K1l «. This means
that « € Cn(X). Thus, as X C K’, and Cn is mono-
tonic, we get that « € Cn(K').

e “(2) = (1)”. Let us assume that for every K’ C K, a €
Cn(K') iff 8 € Cn(K'). We will show that 1L a =
KL 8. For this we need to show that (a) 1L o C 1L 3
and (b) L1 B C KL a.

(a) KIL « € K1 B. Let X € K1 «. Thus,
a € COn(X) which implies from hypothesis that 8 €
Cn(X). Let X’ C X. Thus, as X is an a-kernel, we
have that « ¢ Cn(X"), which implies from hypothesis,
that 8 ¢ Cn(X'). Therefore, X € K 1L 8.

(b) Analogous to item (a).

Proposition 13. Every effacing is an incision function.

Proof. Let 4, be an effacing on a belief base . We need to
show that ¢, satisfies conditions (1), (2) and (3) from Defini-
tion 3. Let € £, and <2 the corresponding a-shard given
by 7.

(1) We will show that ¢, («) C |JKIL o. From Proposi-
tion 11, we have that every a-susceptible formulae in C
is not a-free, which means that 6, (o) C |[JK 1L .

(2) Let X € K1 « such that X # (. We will show
X Né-(a) # 0, that is, there is some ¢ € X such
that ¢ € 0,(«). As X is an a-kernel, we get: (i)
that X is maximal, from a-maximality; and (ii) that
X is finite, from Observation A.1. The latter implies
from Lemma A.2 that there is some ¢ € X such that
X <. {p}. Note that ¢ is not a-free, as X is an -
kernel. Therefore, as X is maximal and X <, {¢},
we also that {(} is also maximal. Therefore, from
Lemma A.3, every set in which ¢ appears is also max-
imal and not a-free (because ¢ is not a-free). This
means that every set that has ¢ is not resistant, which
implies that ¢ is a-susceptible. Therefore, ¢ € 0, ().

(3) let 8 € L, such that 1l o = KL 5. We will show that
0r(a) = 6,(B). Thus,

for all A C IC, A is not a-free iff A is not S-free (1)

From Proposition A.4, we have that for all X' C K,
a € Cn(K) iff 8 € Cn(K). Therefore, from rela-
tional uniformity, we get that <,=<g. This means that
maxg, (P(K)) = maxg,(P(K)) which jointly with
Eq. (1), implies that
resist<,, (K) = resist<, (K).

Thus, a formula is a-susceptible iff it is S-susceptible.
This implies that §, () = §.(5).



O

Lemma A.5. Given an a-hard <, on a belief base K. If
@ is a-susceptible w.rt <., and {¢} <o {¢} then 1 is also
a-susceptible.

Proof. Let ¢ be a-susceptible w.r.t <, in I, and ¢ be a
formula such that {¢} <, {¢}. Let us suppose for contra-
diction that v is not a-susceptible. As ¢ is a-susceptible,
we have {¢} & resist¢_ (K), that is,

{¢} € max¢, ({A C K| Aisnot a-free}).

From the contrapositive of a-discernment we have that ei-
ther {¢} Lo {9} or ¢ is not a-free. Thus, as by hypothesis,
{¢v} <o {¥}, we get ¥ is not a-free. Thus, as {¢} is max-
imal among all not a-free sets, we get from {p} <, {¢}
that 1) is also maximal among all not a-free sets. That is,

{¥} € max¢_ ({A C K| Aisnot a-free}). 2)

By hypothesis, 1 is not a-susceptible. Thus, there is an
A € resist¢, (K), such that ¢ € A. Thus,

A ¢ maxg, ({A C K| Aisnot a-free}). 3)

Note that A is not not a-free, as 1) is not a-free. From
isotonicity, {¢)} <, A which implies from Eq. (2) that
A € maxg, ({A C K| Aisnot a-free}), which contradicts
Eq. (3). Thus, ¥ is a-susceptible.

Theorem 15. Every spalled kernel contraction is smooth.

Proof. Let 0, be an effacing on a belief base I, X C K
and ¢ € d.(a) such that ¢ € Cn(X). We will show that
there is some ¢y € X such that ¢y € §.(«). From ¢ €
Cn(X), we get that there is a X’ € X 1l ¢. Let us fix such
a X'. Thus, from isotonicity, we get {¢} <, X', and from
Lemma A.2, there is some ¢ € X' such that X' <, {v}.
From transitivity, we get {p} <, {¢}. Therefore, from
Lemma A.S, 1 is also a-susceptible, which means that ¢ €
0, ().

O

Lemma A.6. For every smooth incision function o on a
belief base K. If K' C K and K' N o(a) = 0 then
Cn(K") No(a) = 0.

Proof. Let K' C K and K’ No(a) = 0. We have to show
that for every ¢ € Cn(K’), ¢ € o(a). Let p € Cn(K'). As
o(a) C K, the case that ¢ ¢ K is trivial. So we focus on
¢ € K. Thus, from the contrapositie of smoothness, we have
that K’ € Korg ¢ Cn(K') or ¢ ¢ o(«). By hypothesis,
K’ C Kand ¢ € Cn(K'). Thus, ¢ & o(«). O

Lemma 17. For every smooth incision function and o-
projection <9, if BNo(a) = 0 and A <2 B then
Ano(a) = 0.

Proof. Let us suppose for contradiction that A N o(a) # 0.
As <7, is the least relation satisfying the condition (1)-(4)
from Definition 16, we get that at least one of the following
condition must be satisfied (we will get a contradiction from
each of them):

1. BNo(a) # 0, which is contradiction.

2. A C Cn(B). From hypothesis, A N o(a) # () which
means that there is some ¢ € A such that ¢ € o(a). As
o is smooth and B N o(a) = @, we get from Lemma A.6
that Cn(B) No(a) = 0. Thus, as A C Cn(B), we get
that ¢ € Cn(B) which implies Cn(B) No(a) # 0. A
contradiction.

3. Ais a-free which is a contradiction, as by hypothesis AN
ola) £ 0.

4. both A and B are not a-free and (A U B) No(a) = 0.
However, this implies that A N o(«) = () which is a con-
tradiction.

O

Proposition 18. If an incision function o is smooth, then
every a-projection of o satisfies: isotonicity, a-maximality,
a-discernment, conjunctiveness, and transitivity.

Proof sketch. Let <2 be an a-projection of a smooth in-
cision function . Note that a-maximality follows directly
from condition (1), while isotonicity follows from condition
(2). Item 3 puts all a-free sets as the most preferable ones,
that is, the minimal ones. This jointly with Lemma 17 and
Item 1 implies that each set that is not a-free is strictly less
preferable then all a-free sets. Therefore, a-discernment is
satisfied.

* conjunctiveness: let A,B € P(K). If both are are a-
free, then A U B is also a-free, which follows from (3)
that AU B <% A. Let us proceed then to the case that
one of them is not a-free. Without loss of generality, let
us assume that A is not a-free. As A is not a-free, we get
that AU B is also not a-free. If (AU B)No(a) # 0
then either AN o(a) # 0 or BNo(a) # 0. In either
case, it follows from condition (1) that AU B <2 A or
AU B <9 B. So, only the case (AU B) No(a) =
remains. Thus, as both A and A U B are not a-free, we
get from condition (4) that AU B <9 A.

transitivity: let A <% B and B <J C. We will show
that A <5 C. If C No(a) # 0 or A is a-free then from
condition (1) and (3) we get that A <%, C. Let us proceed
then to the case that A is not a-free and C N o(a) = .
As B <2 C and C No(a) = 0, we get from Lemma 17
that B N o(«) = (. This implies, also from Lemma 17,
that AN o(a) = 0. Thus, (AU C) No(a) = 0, which
implies from condition (4) that A <5, C

O

Proof. Let o be a smooth incision function on a belief base
IC, and 7T, its shadowing. We need to show that 7, satisfy
uniformity, and that for every formula o, the o projection
K¢ satisfy: a-maximality, a-discernment, conjunctiveness,
isotonicity and transitivity. Note that a-maximality follows
directly from condition (1), while isotonicity follows from
condition (2).

* «a-discernment: Let us suppose for contradiction that
there are formulae ¢, € K such that ¢ is a-free,
{¥} <Z {¢} but that ¢ is not a-free. As <7, is the least



set satisfying conditions (1)-(4) from Definition 16, then

one of the following conditions hold (we will get a con-

tradiction for each of them):

1. {¢}No(a) # 0. This is a contradiction, as ¢ is a-free.

2. Cn(y) C Cn(yp). Thus, as ¢ is not a-free, there is a
X € K1l asuch that » € X. Let us fix such a X, and
let X’ = X \ {¢}. As X is an a-kernel, it follows that
a ¢ Cn(X'). Thus, from monotonicity

Cn(X")UCn(p) C Cn(X' U{e})
From hypothesis, Cn(1) C Cn(yp). Thus,

Cn(X') U Cn() € Cn(X' U{p})
From inclusion, X’ C Cn(X’), and v € Cn(%).
Thus,

X'U{y} € On(X"U{e}),
which implies from monotonicity that
Cn(X"U{¢}) € Cn(Cn(X" U{p})),
and from idempotency,
Cn(X'U{y}) C Cn(X"U{p}).

Recall from above that X = X' U {¢}, and o €
Cn(X), as X is an a-kernel. Therefore,

a € Cn(X' U{p}).

Thus, there is some Y € (X'U{p}) Ll . Thus,p € Y,
as a ¢ Cn(X'). This means that ¢ is not a-free which
is a contradiction.

3. {v} is a-free, which contradicts our hypothesis.

4. both ¢ and 1) are not a-free which is also a contradic-
tion.

So we conclude that <, indeed satisfies a-discernment.

* conjunctiveness: let A, B € P(K). If both are a-free,
then A U B is also a-free, which implies from (3) that
AU B < A. Let us proceed then to the case that one
of them is not a-free. Without loss of generality, let us
assume that A is not a-free. As A is not a-free, we get
that A U B is also not a-free. If (AU B) No(a) # 0
then either A No(a) # @ or BNo(a) # 0. In either
case, it follows from condition (1) that AU B <7 A or
AU B <9 B. So, only the case (AU B)No(a) =0
remains. Thus, as both A and A U B are not a-free, we
get from condition (4) that AU B <Z A.

o transitivity: let A <7 B and B <§ C. We will show
that A <2 C. If C No(a) # 0 or A is a-free then from
condition (1) and (3) we get that A <Z C'. Let us proceed
then to the case that A is not a-free and C' N o(a) = 0.
As B <2 Cand C No(a) = 0, we get from Lemma 17
that B N o(a) = 0. This implies, also from Lemma 17,
that A N o(a) = (. Thus, (AU C) No(a) = @, which
implies from condition (4) that A <2 C

O

Observation 19. Let o be an incision function on a belief
base K, and let a and f3 be two formulae. If for all K' C K,
it holds that oo € Cn(K') iff 8 € Cn(K'), then <7, = <3.

Proof. Let a, B € K be formulae such that for all £’ C £,
a € Cn(K') iff 3 € Cn(K’). As o is an incision func-
tion, we have from condition (3) of Definition 3 that o («) =
o(f), and from Proposition A.4 we have K1 o = 1L 5.
We will show that A <7 Biff A <j B.

“="Let A <7 B. As <7, is the least relation satisfying the
condition (1)-(4) from Definition 16, we get that at least
one of the condition (1) to (4) must be satisfied:

1. BNno(a) # 0. Thus, as o(«) = o(3), we also have
that B N o(B) # 0. Thus, from the same condition (1)
from Definition 16, we get A <g B.

2. A C Cn(B). Therefore, from the same condition (2)
from Definition 16, we get A <j B.

3. Ais a-free. From above, we have that 1L o = KL 3,
which means that a set X is a-free iff X is S-free.
Therefore, A is [S-free which implies from the same
condition (3) in Definition 16 that A gg B.

4. both A and B are not a-free and (AU B) No(a) # 0.
From above, we have that 1. o = K1L 3, which
means that a set X is a-free iff X is 5-free. Therefore,
both A and B are not S-free. From above, o(a) =
o(8) which implies (A U B) N o(3) # 0. Thus, from
the same condition (4) in Definition 16 we have that
A <3 B.

“«<" Analogous to direction “="".

O

Corollary 21. If an incision function is smooth, then its
shadowing is a spalling.

Proof. Let o be a smooth incision function, and 7, be its
shadowing. From Proposition 18, each a--projection <J, sat-
isfies transitivity, isotonicity, c-maximality, c-discernment,
and conjunctiveness, while from Observation 19 it also satis-
fies relational uniformity. This means that <, is an a-shard.
Therefore, 7, is a spalling. O

Proposition 22. [f o is a smooth incision function on a belief
base IC, then for all formula o:

o(a) = {¢ € K| ¢ is a-susceptible modulo < }.

Proof. Recall that a formula ¢ in K is a-susceptible modulo
a relation <7 iff ¢ € |J KL o and there is no resistant set
A € resist<s (| KL o) such that ¢ € A.

“=" It is easier to prove by its contrapositive. Let us assume
that ¢ & o(«), and we will show that ¢ is not a-susceptible.
The case that ¢ is a-free is trivial. So we focus on the case
¢ € UKL «. Thus, there is some A € K1L « such that
¢ € A Let A’ = A\ o(a). As o is an incision function,
we have that A N o(«) # (). Thus, from the contrapositive
of Lemma 17 (on the statement of that lemma let B stand
for A’) that A €2 A’ or A’ No(a) # 0. However, as
A" = A\ o(a), we have that A’ N o(«) = (). Therefore,
A «2 A’. From condition (1), at Definition 16, we get that
A’ <9 A. Thus, A’ is a resistant set which implies that ¢ is
not a-susceptible, as o € A'.



“<”Let ¢ € o(a). Then, ¢ € UKL «, and it follows
from condition (1) at Definition 16 that every set A € P(K)
that has  is maximal, that is, A € max <z (P(K)). There-
fore,  is a-susceptible.

O

Theorem 23. A kernel contraction is smooth iff its a spalled
kernel contraction.

Proof. From Theorem 15, every spalled kernel contraction
is a smooth kernel contraction. So we are left to prove di-
rection “=". Let —, be a smooth kernel contraction on a
belief base K. To show that = is a spalled kernel contrac-
tion, it suffices to show that there exist an effacing §, such
that (o) = 0,(«), for all formula . Consider the shad-
owing 7, of 0. From Corollary 21, 7, is a spalling. Let
us take then the effacing d7, . Recall from the definition of
shadowing (Definition 20) that 7, (o) = <9. By definition
of effacing,

o1, (a)) = {¢ € K| ¢ is a-susceptible modulo <7}
Moreover, from Proposition 22,
o(a) = {p € K | ¢ is a-susceptible modulo <7 }.

Therefore, o7, (o) = o(«), for all formula «. Thus, ~, is a
spalled kernel contraction.
O

Proposition 26. Ifa kernel contraction function =, satisfies
relevance then o satisfies symmetry of removal.

Proof. Let —, be a kernel contraction function, on a belief
base /C, that satisfies relevance. Let « be a formula, and
A, B C K be a-concordant sets. To show that o satisfies
symmetry of removal, we have to show that: (i) ANo(«) #
(0 iff (ii) B N o(a) # 0.

“(i) = (ii)”. Let us suppose for contradiction that A N
o(a) # @ but BNo(a) = 0. Thus, there is some ¢ € A,
such that ¢ € o(«). From relevance, there is a K’ C K
such that £ ~, o C K’ and

a g Cn(K') and a € Cn(K' U {p})

As p € A, we have K' U {¢} C AUK'. Thus, as Cn
is monotonic, we have Cn(K' U {¢}) C Cn(AUK').
Thus, as from above o € Cn(K’' U {¢}), we get that
a € Cn(AUK'). This means K’ is an a-completion of
A, that is

K" € comi (A, a)

As BNo(a) =0, we have B C K ~, «, which implies
that B C K’. Therefore, B U K’ = K’ which means
Cn(K') = Cn(BUK'). Thus, as o & Cn(K'), we get
a ¢ Cn(B UK'). This means that K’ ¢ comi (B, a).
Therefore, A and B are not o-concordant which contra-
dicts our hypothesis. Thus, B N o (a) # 0.

“(i1) = (1)”. Analogous to “(i) = (ii)”.

Lemma A.7. For every belief base K, and sets A, B C K,
if A C B then comy (A, ) C comy (B, ).

Proof. Let A C B, and X € comy(A,«). Then, a €
Cn(XUA). As A C B we have that XUA C X U B which
from monotonicity of Cn implies Cn(X U A) C Cn(X U
B). Thus, as « € Cn(X U A), we get that « € Cn(X UB).
Thus, X € comg (B, o). O

Proposition 28. If an incision function o satisfies smooth-
ness and symmetry of removal then the smooth kernel con-
traction function —, satisfies relevance.

Proof. Let —, be a smooth kernel contraction on a belief
base /C, and formulae « and 3 such that 3 € K\ (K ~, ).
To prove relevance, we will show that there is a belief base
K’ such that (a) K ~, a € K' C K, (b) a & Cn(K'), and
() a € Cn(K'U{B}).

From g € K\ (K —, o), we get that 5 € o(a). Let

Y = (K o ) U {B}.

Note K ~, aNo(a) = 0, but Y No(a) # 0. Thus, from the
contrapositive of symmetry of removal, we get that IC ~, «
and Y are not a-concordant. As K —. o C Y we have
from Lemma A.7 that comx (K ~, a,a) C comg (Y, a).
Moreover, as K ~, « and Y are not «-concordant, we
have that comi (K ~, a,a) # comi(Y,a). Therefore,
comi (K =4 a,a) C comi (Y, a), which implies that there
issome H € comy (Y, a), suchthat H & comy (K-, a, @).
Thus,

a€Cn(YUH), anda € Cn(K -, U H)
Let us fix such a H. Thus, as Y = (K —, a) U {8}, we get
aeCn((K=;a)U{B} UH)
Let us make K’ = (K —, o) U H. Thus,
(¢) x € Cn(K'U{B}), and (b) a & Cn(K').
AsK—aCKand HCK: (K-, aCK CK. O

Lemma A.8. For every belief base K and sets A, X C K,
if Ais a-freeand X € K1L a but AN X = (), then o &
Cn(YUA)forallY C X.

Proof. Let us suppose for contradiction that A is a-free and
XeKlLabut AN X =0, butthereisa Y C X such that
a € Cn(Y U A). Thus, there is some Y’ € (Y U A)LL a.
Thus,
aeCn(Y')

AsY CYUAandY U A C K, we have Y’ C K which
implies Y’ € K1 «. Thus, as A is a-free, we get that
ANY’' = (. Therefore,as Y’ CYUA, wegetY CY
which implies Cn(Y’) C Cn(Y'). However, as X is an a-
kernel, and Y C X, we have that o € Cn(Y"). This implies
that o ¢ Cn(Y"), which is a contradiction.

O

Observation A.9. If two sets A, B C K are a-concordant
then either (i) both A and B are a-free or (ii) both A and B

are not a-free.



Proof. Let us suppose for contradiction that for some belief
base KC and formula «, there are sets A, B C K such that A
and B are a-concordant, but conditions (i) and (ii) are not
satisfied. Without loss of generality, let us assume that A
is a-free, and B is not a-free. Then, there is some X €
K1 «, such that BN X # ). Let X’ = X \ B. Note that
X' c X and a € Cn(X' U B). Thus X' € comg (B, ).
As A is a-free, we have that o« € Cn(A)and X N A = ()
which implies Lemma A.8 that « ¢ Cn(X’ U A). Thus,
X' & comi (A, a). But then, as A and B are a-concordant,
we get that X’ & comy (B, ) which is a contradiction. [

Proposition A.10. Every mirrored effacing satisfies symme-
try of removal.

Proof. Let us suppose for contradiction that there is a mir-
rored effacing 4., defined on some belief base K, that
does not satisfy symmetry of removal. Thus there are a-
concordant sets A, B C K such that it does not hold that
ANdr(a) # 0iff BN, () # 0. Without loss of general-
ity, let us assume that A N 6, () = @ and B N 6, (a) # 0.
This means that A is a-resistant modulo <], while B is not
a-resistant modulo <J,. From Observation A.9, either (i)
both A and B are «-free or (ii) both A and B are not -
free. For case (i), both A and B are by definition -resistant,
which is a contradiction. So we focus on case (ii). As A is
resistant, but not a-free, it follows that there is an X C K
such that A <7, X and X £ A. Let us fix such an X.
Let Y € K1l «. Thus, from a-maximality, we get that
X < Yand B <], Y. As B is not resistant, we also get
that Y <7, B. From transitivity, we have that X <] B
which from concordant-mirroring implies that X <] A,
which is a contradiction.

O

Theorem 32. Mirrored effacings satisfy symmetry of re-
moval, and every mirrored kernel contraction satisfies rel-
evance.

Proof. We have to prove: that (1) Every mirrored effacing
satisfies symmetry of removal; and (2) very mirrored kernel
contraction satisfies relevance. Item (1) is Proposition A.10.
So we only need to prove item (2). Let —. be a mirrored
kernel contraction, and 4, its mirrored effacing. Thus, from
Proposition A.10, §, satisfies the principle of symmetry of
removal. From Theorem 15, every effacing satisfies smooth-
ness. Thus, from Proposition 28, we have —, satisfies rele-
vance. O

Proposition 33. If a smooth kernel contraction function ~,
satisfies relevance then the shadowing of o is mirrored.

Proof. Let -, be a smooth kernel contraction satisfying rel-
evance, and 7, be the shadowing of o. To show that 7,
is mirrored we need to show that < satisfies concordant-
mirorring for all formula «. Let v be a formula, and let
A,B C K be a-concordant sets, and X <7 A. We will
show that X <J B. As = satisfies relevance, it follows
from Proposition 26 that —, satisfies the principle of sym-
metry of removal. So, A No(a) # Qiff BNo(a) # 0. We
have two cases: either (a) ANo(a) # @ or (b) ANo(a) = 0.

(@ Ano(a) # 0. Thus, from symmetry of removal,
ANo(a) # (. Thus, from Item 1 at Definition 16, we
have X <¢ B.

(b) ANo(a) = (. Thus, from symmetry of removal,
AN o(a) =0, which implies that (A U B) N o(a) = 0.
From Observation A.9 either: (i) both A and B are a-free,
or (ii) both are not a-free. For case (i) we get from Item 3
at Definition 16 that A <¢ B; while for case (ii) we get
from Item 4 at Definition 16, that A <7 B. So, in either
case A <% B. From hypothesis X <2 A, which from
transitivity of <2 implies that X <2 B.

O

Theorem 34. A smooth kernel contraction satisfies rele-
vance iff its a mirrored kernel contraction.

Proof. From Theorem 32, every mirrored kernel contrac-
tion satisfies relevance. For the other direction, let —, be
a smooth kernel contraction function satisfying relevance.

To show that =, is a mirrored kernel contraction, it suf-
fices to show that there exist an effacing ¢, such that (i) 7 is
mirrored, and (ii) o () = d- (), for all formula cv. Consider
the shadowing 7, of o. From Corollary 21, 7 is a spalling.
Let us take then the effacing d. . From Proposition 33, 7, is
mirrored (i). For condition (ii) , recall from the definition of
shadowing (Definition 20) that 7, (a) = <9. By definition
of effacing,

Ot, () = {¢ € K | ¢ is a-susceptible modulo <7}
Moreover, from Proposition 22,
o(a) ={p € K | pis a-susceptible modulo <7 }.

Therefore, o7, (o)) = (), for all formula «.. Thus, —, is a
mirroed kernel contraction.
O



