
A Proofs of Selected Results
Proposition 4. Formula-based incision functions and stan-
dard incision functions are interchangeable, that is,

1. for all standard incision function σ there is a formula-
based incision function σ′ such that σ(K⊥⊥ α) = σ′(α),
for all α;

2. for all formula-based incision function σ′ there is a stan-
dard incision function σ such that σ(K⊥⊥α) = σ′(α), for
all α;

Proof. Let us fix an arbitrary belief base K.

1. Let σ be a standard incision function on K, we construct
the following formula-based function σ′:

σ′(α) = σ(K⊥⊥α).

It is clear that σ and σ′ coincide and that σ′ is a well-
defined function.
We still need to prove that σ′ is indeed a formula-based
function. Satisfaction of conditions (1) and (2) in Defi-
nition 3 follows respectively from conditions (1) and (2)
in Definition 2. For item (3), note that if two formulae
α and β have the same set of kernels, then σ(K⊥⊥ α) =
σ(K⊥⊥β) which implies σ′(α) = σ′(β).

2. Let σ′ be a formula-based incision function on K, we con-
struct the following standard-incision function σ:

σ(X) = σ′(α), for some α ∈ L, such that X = K⊥⊥α.

We have to show three things: (a) σ is a well-defined
function, (2) σ is a standard-incision function, and (c)
σ(K⊥⊥ α) = σ′(α), for all α ∈ L. For item (a), let
X ∈ C(K). Thus, X = K⊥⊥ β, for some β ∈ L. This
concludes the proof that σ is a well-defined function. We
proceed to show that σ is a standard incision-function (b)
and that σ(K⊥⊥α) = σ′(α), for all α ∈ L (c). Let α ∈ L.
From construction

σ(K⊥⊥α) = σ′(β),

for some β ∈ L such that

K⊥⊥α = K⊥⊥β.

Let us fix such a β. To prove that σ is indeed a standard-
incision function we have to show that items (1) and (2)
from Definition 2 are satisfied:

(1) we will show that σ(K⊥⊥ α) ⊆
⋃
K⊥⊥ α. From

item (1) at Definition 3, we get that σ′(β) ⊆
⋃

K⊥⊥β.
Thus, as K⊥⊥α = K⊥⊥ β and σ(K⊥⊥α) = σ′(β), we
get σ(K⊥⊥α) ⊆

⋃
K⊥⊥α.

(2) let X ∈ K⊥⊥α such that X ̸= ∅. We will show that
X ∩ σ(K⊥⊥α) ̸= ∅. As K⊥⊥α = K⊥⊥ β, we get that
X ∈ K⊥⊥ β. Thus, from item (2) at Definition 3, we
get that X ∩ σ′(β) ̸= ∅. Thus, as σ′(β) = σ(K⊥⊥α),
we get that X ∩ σ(K⊥⊥α) ̸= ∅.

This concludes the proof that σ is a standard-incision
function (b). We proceed to show (c) σ(K⊥⊥α) = σ′(α).
From condition (3) of Definition 3, we have that σ′(α) =
σ′(β). This jointly with σ(K⊥⊥ α) = σ′(β) implies that
σ(K⊥⊥α) = σ′(α).

Theorem 7. If Cn is Tarskian and satisfies compactness,
then a contraction function satisfies success, inclusion,
vacuity, uniformity, core-retainment, and relative-closure iff
it is a smooth kernel contraction function.

Proof. Let Cn be a Tarskian consequence operator satisfy-
ing compactness.

“⇒” Let .− be a contraction function, defined on a be-
lief base K, satisfying success, inclusion, vacuity, uni-
formity, core-retainment, and relative-closure. We have
from Theorem 6 that .− corresponds to a kernel contrac-
tion function .−σ . To complete the proof, we need to show
that σ is smooth. Let α,φ ∈ L and K′ ⊆ K such that
φ ∈ Cn(K′) and φ ∈ σ(α). Thus, φ ∈ K. We will show
that K′ ∩ σ(α) ̸= ∅. Let us suppose, for contradiction,
that K′ ∩ σ(α) = ∅. Thus, K′ ⊆ K .−σ α, which implies
from monotonicty that φ ∈ Cn(K .−σ α). As .−σ satisfies
relative-closure, we have that φ ∈ K .−σ α. This implies
that φ ̸∈ σ(α) which is a contradiction. Hence, σ satisfies
smoothness.

“⇐” let .−σ be a smooth contraction function, defined on
a belief base K. We already have from Theorem 6 that
in the presence of monotonicity and compactness, kernel
contractions are characterised by the first five rationality
postulates. So, we only need to show that .−σ satisfies
relative-closure. Let us suppose for contradiction that it
does not satisfy relative-closure. Thus, there are formulae
α and β such that β ∈ K, β ∈ Cn(K .−σ α) but β ̸∈
K .−σ α. Recall from definition of contraction functions
that K .−σ α = K \ σ(α). Therefore,

(K .−σ α) ∩ σ(α) = ∅,

K .−σ α ⊆ K and β ∈ σ(α). By hypothesis β ̸∈ K .−σ α.
Thus, from smoothness, we have (K .−σ α) ∩ σ(α) ̸= ∅,
which is a contradiction. Hence, we conclude that .−σ

satisfies relative-closure.

Observation A.1. If Cn is compact than every α-kernel is
finite.

Proof. Let K be a belief base, and and α-kernel A ∈ ⊥⊥α,
for some formula α. As A is an α-kernel, it entails α. Thus,
As Cn is compact, there is a A′ ⊆ A such that α ∈ Cn(A′).
However, as A is an α-kernel, there is no proper subset of A
that entails α, which means that A ̸⊂ A. Therefore, A = A′

which means that A is finite.

Lemma A.2. Given an α-shard ⩽α on a belief base K such
that α ∈ Cn(K). For every X ⊆ K, if X is finite and non-
empty, then there is some φ ∈ X such that X ⩽α {φ}.

Proof. The proof follows by induction on the site of X .

Base: |X| = 1. Thus, X = {φ}, for some φ ∈ L. As Cn
satisfies inclusion, we have that {φ} ⊆ Cn({φ}). Thus,
from isotonicity, {φ} ⩽α {φ}, that is, X ⩽α {φ}.

Induction Hypothesis (IH): if Y ⊆ K and |Y | < |X| then
there is some φ ∈ Y such that Y ⩽α {φ}



Induction Step: |X| > 1. Then X = Y ∪ Y ′, for some
Y, Y ′ ⊆ X such that |Y | > 1, |Y ′| > 1, and Y ∩ Y ′ = ∅.
Note that |Y | < |X|, |Y ′| < |X|. From conjunctive-
ness, X ⩽α Y or X ⩽α Y ′. Without loss of generality,
let assume the X ⩽α Y . Thus, from IH, that there is
some φ ∈ Y such that Y ⩽α {φ}. Thus, from transitivity,
X ⩽α {φ}, and φ ∈ X .

Lemma A.3. Given an α-shard ⩽α on a belief base K
such that α ∈ Cn(K). If {φ} ∈ max⩽α(P(K)) then
A ∈ max⩽α

(P(K)), for all A ⊆ K such that φ ∈ A.

Proof. Let ⩽α be an α-shard on a belief base K such that
α ∈ Cn(K). Moreover, let φ ∈ max⩽α(P(K)), and a A ⊆
K such that φ ∈ A. From isotonicity, {φ} ⩽α A. Therefore,
as {φ} is maximal, we get that A ⩽α {φ} which means that
A ∈ max⩽α

(P(K)).

Proposition 11. If ⩽α is an α-shard on a belief base K,

1. every α-susceptible formula w.r.t ⩽α is not α-free;
2. α is not tautological and α ∈ Cn(K) iff there is an α-

susceptible formula in K.

Proof. Let ⩽α be an α-shard on a belief base K.

1. let φ be an α-susceptible formula modulo an α-shard ⩽α.
Thus, φ does not appear in any of the resistant sets. By
definition, the set of all α-free formulae is resistant. Thus,
φ does not appear in such a set, which means φ is not α-
free.

2. the direction “⇐” follows from item 1, because an α-
susceptible formula φ necessarily is not α-free which
implies that there is some α-kernel A ∈ K⊥⊥ α such
φ ∈ A. Therefore, α ∈ Cn(K). For the direction “⇒”,
from α ∈ Cn(K) we get there is at least one α-kernel
X ∈ K⊥⊥ α, and from compactness we know that all
of them are finite. Let us fix an α-kernel X ∈ K⊥⊥ α.
From α-maximality, we get that X is maximal, and from
Lemma A.2, there is a φ ∈ X such that X ⩽α {φ}. Let
us fix such a φ. Therefore, as X is maximal, we get that
{φ} is also maximal. This implies from Lemma A.3, that
every set in which φ appears is also maximal. Therefore,
every set in which φ appears is not resistant. This means
that φ is α-susceptible.

Proposition A.4. For every belief base K, and formulae α
and β. The following statements are equivalent:

1. K⊥⊥α = K⊥⊥β;
2. for every K′ ⊆ K′, α ∈ Cn(K′) iff β ∈ Cn(K′).

Proof. Let K be a belief base and α and β be formulae.

• “(1) ⇒ (2)”. Let us assume that K⊥⊥α = K⊥⊥β, and let
K′ ⊆ K. We have to show that (a) if α ∈ Cn(K′) then
β ∈ Cn(K′); and (b) if β ∈ Cn(K′) then α ∈ Cn(K′).

(a) let α ∈ Cn(K′). Then there is some X ∈ K′⊥⊥α.
Thus, as X ⊆ K′ and K′ ⊆ K, we get that X ⊆ K,
which means X ∈ K⊥⊥α. From hypothesis, K⊥⊥α =
K⊥⊥β, which implies thatX ∈ K⊥⊥β. This means that
β ∈ Cn(X). Thus, as X ⊆ K′, and Cn is monotonic,
we get that β ∈ Cn(K′).
(b) if β ∈ Cn(K′). Then there is some X ∈ K′⊥⊥ β.
Thus, as X ⊆ K′ and K′ ⊆ K, we get that X ⊆ K,
which means X ∈ K⊥⊥β. From hypothesis, K⊥⊥α =
K⊥⊥ β, which implies that X ∈ K⊥⊥ α. This means
that α ∈ Cn(X). Thus, as X ⊆ K′, and Cn is mono-
tonic, we get that α ∈ Cn(K′).

• “(2) ⇒ (1)”. Let us assume that for every K′ ⊆ K′, α ∈
Cn(K′) iff β ∈ Cn(K′). We will show that K⊥⊥ α =
K⊥⊥β. For this we need to show that (a) K⊥⊥α ⊆ K⊥⊥β
and (b) K⊥⊥β ⊆ K⊥⊥α.

(a) K⊥⊥ α ⊆ K⊥⊥ β. Let X ∈ K⊥⊥ α. Thus,
α ∈ Cn(X) which implies from hypothesis that β ∈
Cn(X). Let X ′ ⊂ X . Thus, as X is an α-kernel, we
have that α ̸∈ Cn(X ′), which implies from hypothesis,
that β ̸∈ Cn(X ′). Therefore, X ∈ K⊥⊥β.
(b) Analogous to item (a).

Proposition 13. Every effacing is an incision function.

Proof. Let δτ be an effacing on a belief base K. We need to
show that δτ satisfies conditions (1), (2) and (3) from Defini-
tion 3. Let α ∈ L, and ⩽α

τ the corresponding α-shard given
by τ .

(1) We will show that δτ (α) ⊆
⋃

K⊥⊥ α. From Proposi-
tion 11, we have that every α-susceptible formulae in K
is not α-free, which means that δτ (α) ⊆

⋃
K⊥⊥α.

(2) Let X ∈ K⊥⊥ α such that X ̸= ∅. We will show
X ∩ δτ (α) ̸= ∅, that is, there is some φ ∈ X such
that φ ∈ δτ (α). As X is an α-kernel, we get: (i)
that X is maximal, from α-maximality; and (ii) that
X is finite, from Observation A.1. The latter implies
from Lemma A.2 that there is some φ ∈ X such that
X ⩽α {φ}. Note that φ is not α-free, as X is an α-
kernel. Therefore, as X is maximal and X ⩽α {φ},
we also that {φ} is also maximal. Therefore, from
Lemma A.3, every set in which φ appears is also max-
imal and not α-free (because φ is not α-free). This
means that every set that has φ is not resistant, which
implies that φ is α-susceptible. Therefore, φ ∈ δτ (α).

(3) let β ∈ L, such that K⊥⊥α = K⊥⊥β. We will show that
δτ (α) = δτ (β). Thus,

for all A ⊆ K, A is not α-free iff A is not β-free (1)
From Proposition A.4, we have that for all K′ ⊆ K,
α ∈ Cn(K) iff β ∈ Cn(K). Therefore, from rela-
tional uniformity, we get that ⩽α=⩽β . This means that
max⩽α

(P(K)) = max⩽β
(P(K)) which jointly with

Eq. (1), implies that
resist⩽α(K) = resist⩽β

(K).

Thus, a formula is α-susceptible iff it is β-susceptible.
This implies that δτ (α) = δτ (β).



Lemma A.5. Given an α-hard ⩽α on a belief base K. If
φ is α-susceptible w.r.t ⩽α and {φ} ⩽α {ψ} then ψ is also
α-susceptible.

Proof. Let φ be α-susceptible w.r.t ⩽α in K, and ψ be a
formula such that {φ} ⩽α {ψ}. Let us suppose for contra-
diction that ψ is not α-susceptible. As φ is α-susceptible,
we have {φ} ̸∈ resist⩽α(K), that is,

{φ} ∈ max⩽α
({A ⊆ K | A is not α-free}).

From the contrapositive of α-discernment we have that ei-
ther {φ} ⩽̸α {ψ} or ψ is not α-free. Thus, as by hypothesis,
{φ} ⩽α {ψ}, we get ψ is not α-free. Thus, as {φ} is max-
imal among all not α-free sets, we get from {φ} ⩽α {ψ}
that ψ is also maximal among all not α-free sets. That is,

{ψ} ∈ max⩽α
({A ⊆ K | A is not α-free}). (2)

By hypothesis, ψ is not α-susceptible. Thus, there is an
A ∈ resist⩽α(K), such that ψ ∈ A. Thus,

A ̸∈ max⩽α
({A ⊆ K | A is not α-free}). (3)

Note that A is not not α-free, as ψ is not α-free. From
isotonicity, {ψ} ⩽α A which implies from Eq. (2) that
A ∈ max⩽α

({A ⊆ K | A is not α-free}), which contradicts
Eq. (3). Thus, ψ is α-susceptible.

Theorem 15. Every spalled kernel contraction is smooth.

Proof. Let δτ be an effacing on a belief base K, X ⊆ K
and φ ∈ δτ (α) such that φ ∈ Cn(X). We will show that
there is some ψ ∈ X such that ψ ∈ δτ (α). From φ ∈
Cn(X), we get that there is a X ′ ∈ X⊥⊥φ. Let us fix such
a X ′. Thus, from isotonicity, we get {φ} ⩽α X

′, and from
Lemma A.2, there is some ψ ∈ X ′ such that X ′ ⩽α {ψ}.
From transitivity, we get {φ} ⩽α {ψ}. Therefore, from
Lemma A.5, ψ is also α-susceptible, which means that ψ ∈
δτ (α).

Lemma A.6. For every smooth incision function σ on a
belief base K. If K′ ⊆ K and K′ ∩ σ(α) = ∅ then
Cn(K′) ∩ σ(α) = ∅.

Proof. Let K′ ⊆ K and K′ ∩ σ(α) = ∅. We have to show
that for every φ ∈ Cn(K′), φ ̸∈ σ(α). Let φ ∈ Cn(K′). As
σ(α) ⊆ K, the case that φ ̸∈ K is trivial. So we focus on
φ ∈ K. Thus, from the contrapositie of smoothness, we have
that K′ ̸⊆ K or φ ̸∈ Cn(K′) or φ ̸∈ σ(α). By hypothesis,
K′ ⊆ K and φ ∈ Cn(K′). Thus, φ ̸∈ σ(α).

Lemma 17. For every smooth incision function and α-
projection ⩽σ

α, if B ∩ σ(α) = ∅ and A ⩽σ
α B then

A ∩ σ(α) = ∅.

Proof. Let us suppose for contradiction that A ∩ σ(α) ̸= ∅.
As ⩽σ

α is the least relation satisfying the condition (1)-(4)
from Definition 16, we get that at least one of the following
condition must be satisfied (we will get a contradiction from
each of them):

1. B ∩ σ(α) ̸= ∅, which is contradiction.
2. A ⊆ Cn(B). From hypothesis, A ∩ σ(α) ̸= ∅ which

means that there is some φ ∈ A such that φ ∈ σ(α). As
σ is smooth and B ∩ σ(α) = ∅, we get from Lemma A.6
that Cn(B) ∩ σ(α) = ∅. Thus, as A ⊆ Cn(B), we get
that φ ∈ Cn(B) which implies Cn(B) ∩ σ(α) ̸= ∅. A
contradiction.

3. A is α-free which is a contradiction, as by hypothesis A∩
σ(α) ̸= ∅.

4. both A and B are not α-free and (A ∪ B) ∩ σ(α) = ∅.
However, this implies that A ∩ σ(α) = ∅ which is a con-
tradiction.

Proposition 18. If an incision function σ is smooth, then
every α-projection of σ satisfies: isotonicity, α-maximality,
α-discernment, conjunctiveness, and transitivity.

Proof sketch. Let ⩽σ
α be an α-projection of a smooth in-

cision function σ. Note that α-maximality follows directly
from condition (1), while isotonicity follows from condition
(2). Item 3 puts all α-free sets as the most preferable ones,
that is, the minimal ones. This jointly with Lemma 17 and
Item 1 implies that each set that is not α-free is strictly less
preferable then all α-free sets. Therefore, α-discernment is
satisfied.

• conjunctiveness: let A,B ∈ P(K). If both are are α-
free, then A ∪ B is also α-free, which follows from (3)
that A ∪ B ⩽σ

α A. Let us proceed then to the case that
one of them is not α-free. Without loss of generality, let
us assume that A is not α-free. As A is not α-free, we get
that A ∪ B is also not α-free. If (A ∪ B) ∩ σ(α) ̸= ∅
then either A ∩ σ(α) ̸= ∅ or B ∩ σ(α) ̸= ∅. In either
case, it follows from condition (1) that A ∪ B ⩽σ

α A or
A ∪ B ⩽σ

α B. So, only the case (A ∪ B) ∩ σ(α) = ∅
remains. Thus, as both A and A ∪ B are not α-free, we
get from condition (4) that A ∪B ⩽σ

α A.
• transitivity: let A ⩽σ

α B and B ⩽σ
α C. We will show

that A ⩽σ
α C. If C ∩ σ(α) ̸= ∅ or A is α-free then from

condition (1) and (3) we get that A ⩽σ
α C. Let us proceed

then to the case that A is not α-free and C ∩ σ(α) = ∅.
As B ⩽σ

α C and C ∩ σ(α) = ∅, we get from Lemma 17
that B ∩ σ(α) = ∅. This implies, also from Lemma 17,
that A ∩ σ(α) = ∅. Thus, (A ∪ C) ∩ σ(α) = ∅, which
implies from condition (4) that A ⩽σ

α C

Proof. Let σ be a smooth incision function on a belief base
K, and Tσ its shadowing. We need to show that Tσ satisfy
uniformity, and that for every formula α, the α projection
⩽σ

α satisfy: α-maximality, α-discernment, conjunctiveness,
isotonicity and transitivity. Note that α-maximality follows
directly from condition (1), while isotonicity follows from
condition (2).

• α-discernment: Let us suppose for contradiction that
there are formulae φ,ψ ∈ K such that φ is α-free,
{ψ} ⩽σ

α {φ} but that ψ is not α-free. As ⩽σ
α is the least



set satisfying conditions (1)-(4) from Definition 16, then
one of the following conditions hold (we will get a con-
tradiction for each of them):

1. {φ}∩σ(α) ̸= ∅. This is a contradiction, as φ is α-free.
2. Cn(ψ) ⊆ Cn(φ). Thus, as ψ is not α-free, there is a
X ∈ K⊥⊥α such that ψ ∈ X . Let us fix such a X , and
let X ′ = X \ {ψ}. As X is an α-kernel, it follows that
α ̸∈ Cn(X ′). Thus, from monotonicity

Cn(X ′) ∪ Cn(φ) ⊆ Cn(X ′ ∪ {φ})

From hypothesis, Cn(ψ) ⊆ Cn(φ). Thus,

Cn(X ′) ∪ Cn(ψ) ⊆ Cn(X ′ ∪ {φ})

From inclusion, X ′ ⊆ Cn(X ′), and ψ ∈ Cn(ψ).
Thus,

X ′ ∪ {ψ} ⊆ Cn(X ′ ∪ {φ}),
which implies from monotonicity that

Cn(X ′ ∪ {ψ}) ⊆ Cn(Cn(X ′ ∪ {φ})),

and from idempotency,

Cn(X ′ ∪ {ψ}) ⊆ Cn(X ′ ∪ {φ}).

Recall from above that X = X ′ ∪ {ψ}, and α ∈
Cn(X), as X is an α-kernel. Therefore,

α ∈ Cn(X ′ ∪ {φ}).

Thus, there is some Y ∈ (X ′∪{φ})⊥⊥α. Thus, φ ∈ Y ,
as α ̸∈ Cn(X ′). This means that φ is not α-free which
is a contradiction.

3. {ψ} is α-free, which contradicts our hypothesis.
4. both φ and ψ are not α-free which is also a contradic-

tion.
So we conclude that ⩽σ

α indeed satisfies α-discernment.
• conjunctiveness: let A,B ∈ P(K). If both are α-free,

then A ∪ B is also α-free, which implies from (3) that
A ∪ B ⩽σ

α A. Let us proceed then to the case that one
of them is not α-free. Without loss of generality, let us
assume that A is not α-free. As A is not α-free, we get
that A ∪ B is also not α-free. If (A ∪ B) ∩ σ(α) ̸= ∅
then either A ∩ σ(α) ̸= ∅ or B ∩ σ(α) ̸= ∅. In either
case, it follows from condition (1) that A ∪ B ⩽σ

α A or
A ∪ B ⩽σ

α B. So, only the case (A ∪ B) ∩ σ(α) = ∅
remains. Thus, as both A and A ∪ B are not α-free, we
get from condition (4) that A ∪B ⩽σ

α A.
• transitivity: let A ⩽σ

α B and B ⩽σ
α C. We will show

that A ⩽σ
α C. If C ∩ σ(α) ̸= ∅ or A is α-free then from

condition (1) and (3) we get that A ⩽σ
α C. Let us proceed

then to the case that A is not α-free and C ∩ σ(α) = ∅.
As B ⩽σ

α C and C ∩ σ(α) = ∅, we get from Lemma 17
that B ∩ σ(α) = ∅. This implies, also from Lemma 17,
that A ∩ σ(α) = ∅. Thus, (A ∪ C) ∩ σ(α) = ∅, which
implies from condition (4) that A ⩽σ

α C

Observation 19. Let σ be an incision function on a belief
base K, and let α and β be two formulae. If for all K′ ⊆ K,
it holds that α ∈ Cn(K′) iff β ∈ Cn(K′), then ⩽σ

α = ⩽σ
β .

Proof. Let α, β ∈ K be formulae such that for all K′ ⊆ K,
α ∈ Cn(K′) iff β ∈ Cn(K′). As σ is an incision func-
tion, we have from condition (3) of Definition 3 that σ(α) =
σ(β), and from Proposition A.4 we have K⊥⊥ α = K⊥⊥ β.
We will show that A ⩽σ

α B iff A ⩽σ
β B.

“⇒” LetA ⩽σ
α B. As ⩽σ

α is the least relation satisfying the
condition (1)-(4) from Definition 16, we get that at least
one of the condition (1) to (4) must be satisfied:

1. B ∩ σ(α) ̸= ∅. Thus, as σ(α) = σ(β), we also have
that B ∩ σ(β) ̸= ∅. Thus, from the same condition (1)
from Definition 16, we get A ⩽σ

β B.
2. A ⊆ Cn(B). Therefore, from the same condition (2)

from Definition 16, we get A ⩽σ
β B.

3. A is α-free. From above, we have that K⊥⊥α = K⊥⊥β,
which means that a set X is α-free iff X is β-free.
Therefore, A is β-free which implies from the same
condition (3) in Definition 16 that A ⩽σ

β B.
4. both A and B are not α-free and (A ∪B) ∩ σ(α) ̸= ∅.

From above, we have that K⊥⊥ α = K⊥⊥ β, which
means that a set X is α-free iff X is β-free. Therefore,
both A and B are not β-free. From above, σ(α) =
σ(β) which implies (A ∪ B) ∩ σ(β) ̸= ∅. Thus, from
the same condition (4) in Definition 16 we have that
A ⩽σ

β B.
“⇐” Analogous to direction “⇒”.

Corollary 21. If an incision function is smooth, then its
shadowing is a spalling.

Proof. Let σ be a smooth incision function, and Tσ be its
shadowing. From Proposition 18, each α-projection ⩽σ

α sat-
isfies transitivity, isotonicity, α-maximality, α-discernment,
and conjunctiveness, while from Observation 19 it also satis-
fies relational uniformity. This means that ⩽σ

α is an α-shard.
Therefore, Tσ is a spalling.

Proposition 22. If σ is a smooth incision function on a belief
base K, then for all formula α:

σ(α) = {φ ∈ K | φ is α-susceptible modulo ⩽σ
α}.

Proof. Recall that a formula φ in K is α-susceptible modulo
a relation ⩽σ

α iff φ ∈
⋃

K⊥⊥α and there is no resistant set
A ∈ resist⩽σ

α
(
⋃
K⊥⊥α) such that φ ∈ A.

“⇒” It is easier to prove by its contrapositive. Let us assume
that φ ̸∈ σ(α), and we will show that φ is not α-susceptible.
The case that φ is α-free is trivial. So we focus on the case
φ ∈

⋃
K⊥⊥ α. Thus, there is some A ∈ K⊥⊥ α such that

φ ∈ A. Let A′ = A \ σ(α). As σ is an incision function,
we have that A ∩ σ(α) ̸= ∅. Thus, from the contrapositive
of Lemma 17 (on the statement of that lemma let B stand
for A′) that A ̸⩽σ

α A′ or A′ ∩ σ(α) ̸= ∅. However, as
A′ = A \ σ(α), we have that A′ ∩ σ(α) = ∅. Therefore,
A ̸⩽σ

α A
′. From condition (1), at Definition 16, we get that

A′ ⩽σ
α A. Thus, A′ is a resistant set which implies that φ is

not α-susceptible, as φ ∈ A′.



“⇐” Let φ ∈ σ(α). Then, φ ∈
⋃
K⊥⊥ α, and it follows

from condition (1) at Definition 16 that every set A ∈ P(K)
that has φ is maximal, that is, A ∈ max⩽σ

α
(P(K)). There-

fore, φ is α-susceptible.

Theorem 23. A kernel contraction is smooth iff its a spalled
kernel contraction.

Proof. From Theorem 15, every spalled kernel contraction
is a smooth kernel contraction. So we are left to prove di-
rection “⇒”. Let .−σ be a smooth kernel contraction on a
belief base K. To show that .−σ is a spalled kernel contrac-
tion, it suffices to show that there exist an effacing δτ such
that σ(α) = δτ (α), for all formula α. Consider the shad-
owing Tσ of σ. From Corollary 21, Tσ is a spalling. Let
us take then the effacing δTσ

. Recall from the definition of
shadowing (Definition 20) that Tσ(α) = ⩽σ

α. By definition
of effacing,

δTσ (α) = {φ ∈ K | φ is α-susceptible modulo ⩽σ
α}

Moreover, from Proposition 22,

σ(α) = {φ ∈ K | φ is α-susceptible modulo ⩽σ
α}.

Therefore, δTσ (α) = σ(α), for all formula α. Thus, .−σ is a
spalled kernel contraction.

Proposition 26. If a kernel contraction function .−σ satisfies
relevance then σ satisfies symmetry of removal.

Proof. Let .−σ be a kernel contraction function, on a belief
base K, that satisfies relevance. Let α be a formula, and
A,B ⊆ K be α-concordant sets. To show that σ satisfies
symmetry of removal, we have to show that: (i) A∩σ(α) ̸=
∅ iff (ii) B ∩ σ(α) ̸= ∅.

“(i) ⇒ (ii)”. Let us suppose for contradiction that A ∩
σ(α) ̸= ∅ but B ∩ σ(α) = ∅. Thus, there is some φ ∈ A,
such that φ ∈ σ(α). From relevance, there is a K′ ⊆ K
such that K .−σ α ⊆ K′ and

α ̸∈ Cn(K′) and α ∈ Cn(K′ ∪ {φ})

As φ ∈ A, we have K′ ∪ {φ} ⊆ A ∪ K′. Thus, as Cn
is monotonic, we have Cn(K′ ∪ {φ}) ⊆ Cn(A ∪ K′).
Thus, as from above α ∈ Cn(K′ ∪ {φ}), we get that
α ∈ Cn(A ∪ K′). This means K′ is an α-completion of
A, that is

K′ ∈ comK(A,α)

As B ∩ σ(α) = ∅, we have B ⊆ K .−σ α, which implies
that B ⊆ K′. Therefore, B ∪ K′ = K′ which means
Cn(K′) = Cn(B ∪ K′). Thus, as α ̸∈ Cn(K′), we get
α ̸∈ Cn(B ∪ K′). This means that K′ ̸∈ comK(B,α).
Therefore, A and B are not α-concordant which contra-
dicts our hypothesis. Thus, B ∩ σ(α) ̸= ∅.
“(ii) ⇒ (i)”. Analogous to “(i) ⇒ (ii)”.

Lemma A.7. For every belief base K, and sets A,B ⊆ K,
if A ⊆ B then comK(A,α) ⊆ comK(B,α).

Proof. Let A ⊆ B, and X ∈ comK(A,α). Then, α ∈
Cn(X∪A). AsA ⊆ B we have thatX∪A ⊆ X∪B which
from monotonicity of Cn implies Cn(X ∪ A) ⊆ Cn(X ∪
B). Thus, as α ∈ Cn(X ∪A), we get that α ∈ Cn(X ∪B).
Thus, X ∈ comK(B,α).

Proposition 28. If an incision function σ satisfies smooth-
ness and symmetry of removal then the smooth kernel con-
traction function .−σ satisfies relevance.

Proof. Let .−σ be a smooth kernel contraction on a belief
base K, and formulae α and β such that β ∈ K \ (K .−σ α).
To prove relevance, we will show that there is a belief base
K′ such that (a) K .−σ α ⊆ K′ ⊆ K, (b) α ̸∈ Cn(K′), and
(c) α ∈ Cn(K′ ∪ {β}).

From β ∈ K \ (K .−σ α), we get that β ∈ σ(α). Let

Y = (K .−σ α) ∪ {β}.

Note K .−σ α∩σ(α) = ∅, but Y ∩σ(α) ̸= ∅. Thus, from the
contrapositive of symmetry of removal, we get that K .−σ α
and Y are not α-concordant. As K .−τ α ⊆ Y we have
from Lemma A.7 that comK(K .−σ α, α) ⊆ comK(Y, α).
Moreover, as K .−σ α and Y are not α-concordant, we
have that comK(K .−σ α, α) ̸= comK(Y, α). Therefore,
comK(K .−σ α, α) ⊂ comK(Y, α), which implies that there
is someH ∈ comK(Y, α), such thatH ̸∈ comK(K .−σα, α).
Thus,

α ∈ Cn(Y ∪H), and α ̸∈ Cn(K .−τ α ∪H)

Let us fix such a H . Thus, as Y = (K .−σ α) ∪ {β}, we get

α ∈ Cn((K .−σ α) ∪ {β} ∪H)

Let us make K′ = (K .−σ α) ∪H . Thus,

(c) α ∈ Cn(K′ ∪ {β}), and (b) α ̸∈ Cn(K′).

As K .−τ α ⊆ K and H ⊆ K: (a) K .−τ α ⊆ K′ ⊆ K.

Lemma A.8. For every belief base K and sets A,X ⊆ K,
if A is α-free and X ∈ K⊥⊥ α but A ∩ X = ∅, then α ̸∈
Cn(Y ∪A) for all Y ⊂ X .

Proof. Let us suppose for contradiction that A is α-free and
X ∈ K⊥⊥α but A ∩X = ∅, but there is a Y ⊂ X such that
α ∈ Cn(Y ∪ A). Thus, there is some Y ′ ∈ (Y ∪ A)⊥⊥ α.
Thus,

α ∈ Cn(Y ′)

As Y ′ ⊆ Y ∪ A and Y ∪ A ⊆ K, we have Y ′ ⊆ K which
implies Y ′ ∈ K⊥⊥ α. Thus, as A is α-free, we get that
A ∩ Y ′ = ∅. Therefore, as Y ′ ⊆ Y ∪ A, we get Y ′ ⊆ Y
which implies Cn(Y ′) ⊆ Cn(Y ). However, as X is an α-
kernel, and Y ⊂ X , we have that α ̸∈ Cn(Y ). This implies
that α ̸∈ Cn(Y ′), which is a contradiction.

Observation A.9. If two sets A,B ⊆ K are α-concordant
then either (i) both A and B are α-free or (ii) both A and B
are not α-free.



Proof. Let us suppose for contradiction that for some belief
base K and formula α, there are sets A,B ⊆ K such that A
and B are α-concordant, but conditions (i) and (ii) are not
satisfied. Without loss of generality, let us assume that A
is α-free, and B is not α-free. Then, there is some X ∈
K⊥⊥α, such that B ∩X ̸= ∅. Let X ′ = X \ B. Note that
X ′ ⊂ X and α ∈ Cn(X ′ ∪ B). Thus X ′ ∈ comK(B,α).
As A is α-free, we have that α ̸∈ Cn(A) and X ∩ A = ∅
which implies Lemma A.8 that α ̸∈ Cn(X ′ ∪ A). Thus,
X ′ ̸∈ comK(A,α). But then, as A and B are α-concordant,
we get that X ′ ̸∈ comK(B,α) which is a contradiction.

Proposition A.10. Every mirrored effacing satisfies symme-
try of removal.

Proof. Let us suppose for contradiction that there is a mir-
rored effacing δτ , defined on some belief base K, that
does not satisfy symmetry of removal. Thus there are α-
concordant sets A,B ⊆ K such that it does not hold that
A ∩ δτ (α) ̸= ∅ iff B ∩ δτ (α) ̸= ∅. Without loss of general-
ity, let us assume that A ∩ δτ (α) = ∅ and B ∩ δτ (α) ̸= ∅.
This means that A is α-resistant modulo ⩽τ

α while B is not
α-resistant modulo ⩽τ

α. From Observation A.9, either (i)
both A and B are α-free or (ii) both A and B are not α-
free. For case (i), bothA andB are by definition α-resistant,
which is a contradiction. So we focus on case (ii). As A is
resistant, but not α-free, it follows that there is an X ⊆ K
such that A ⩽τ

α X and X ̸⩽τ
α A. Let us fix such an X .

Let Y ∈ K⊥⊥ α. Thus, from α-maximality, we get that
X ⩽τ

α Y and B ⩽τ
α Y . As B is not resistant, we also get

that Y ⩽τ
α B. From transitivity, we have that X ⩽τ

α B
which from concordant-mirroring implies that X ⩽τ

α A,
which is a contradiction.

Theorem 32. Mirrored effacings satisfy symmetry of re-
moval, and every mirrored kernel contraction satisfies rel-
evance.

Proof. We have to prove: that (1) Every mirrored effacing
satisfies symmetry of removal; and (2) very mirrored kernel
contraction satisfies relevance. Item (1) is Proposition A.10.
So we only need to prove item (2). Let .−τ be a mirrored
kernel contraction, and δτ its mirrored effacing. Thus, from
Proposition A.10, δτ satisfies the principle of symmetry of
removal. From Theorem 15, every effacing satisfies smooth-
ness. Thus, from Proposition 28, we have .−τ satisfies rele-
vance.

Proposition 33. If a smooth kernel contraction function .−σ

satisfies relevance then the shadowing of σ is mirrored.

Proof. Let .−σ be a smooth kernel contraction satisfying rel-
evance, and Tσ be the shadowing of σ. To show that Tσ
is mirrored we need to show that ⩽σ

α satisfies concordant-
mirorring for all formula α. Let α be a formula, and let
A,B ⊆ K be α-concordant sets, and X ⩽σ

α A. We will
show that X ⩽σ

α B. As .−τ satisfies relevance, it follows
from Proposition 26 that .−τ satisfies the principle of sym-
metry of removal. So, A ∩ σ(α) ̸= ∅ iff B ∩ σ(α) ̸= ∅. We
have two cases: either (a)A∩σ(α) ̸= ∅ or (b)A∩σ(α) = ∅.

(a) A ∩ σ(α) ̸= ∅. Thus, from symmetry of removal,
A ∩ σ(α) ̸= ∅. Thus, from Item 1 at Definition 16, we
have X ⩽σ

α B.
(b) A ∩ σ(α) = ∅. Thus, from symmetry of removal,
A ∩ σ(α) = ∅, which implies that (A ∪ B) ∩ σ(α) = ∅.
From Observation A.9 either: (i) bothA andB are α-free,
or (ii) both are not α-free. For case (i) we get from Item 3
at Definition 16 that A ⩽σ

α B; while for case (ii) we get
from Item 4 at Definition 16, that A ⩽σ

α B. So, in either
case A ⩽σ

α B. From hypothesis X ⩽σ
α A, which from

transitivity of ⩽σ
α implies that X ⩽σ

α B.

Theorem 34. A smooth kernel contraction satisfies rele-
vance iff its a mirrored kernel contraction.

Proof. From Theorem 32, every mirrored kernel contrac-
tion satisfies relevance. For the other direction, let .−σ be
a smooth kernel contraction function satisfying relevance.

To show that .−σ is a mirrored kernel contraction, it suf-
fices to show that there exist an effacing δτ such that (i) τ is
mirrored, and (ii) σ(α) = δτ (α), for all formula α. Consider
the shadowing Tσ of σ. From Corollary 21, Tσ is a spalling.
Let us take then the effacing δTσ

. From Proposition 33, Tσ is
mirrored (i). For condition (ii) , recall from the definition of
shadowing (Definition 20) that Tσ(α) = ⩽σ

α. By definition
of effacing,

δTσ
(α) = {φ ∈ K | φ is α-susceptible modulo ⩽σ

α}

Moreover, from Proposition 22,

σ(α) = {φ ∈ K | φ is α-susceptible modulo ⩽σ
α}.

Therefore, δTσ
(α) = σ(α), for all formula α. Thus, .−σ is a

mirroed kernel contraction.


