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Abstract. In this work we address the problem of model checking a de-
sired property specified in Computation Tree Logic (CTL) in the presence
of partial information. The Kripke Modal Transition System (KMTS) is
used for modelling due its capacity to represent indefinitions explicitly
which enables a KMTS interpretation as a set of Kripke structures. In
this interpretation a specific model checking algorithm is required that
can return one of the three possible values: true when all Kripke models
of the set satisfy the property, false when no Kripke models of the set
satisfy the property and indefinite when some models satisfy and oth-
ers do not. To the best of our knowledge the literature lacks a KMTS
model checking algorithm that fits this interpretation and in this paper
we present an algorithm based on a game approach called a Contraction
Model Checking algorithm for this purpose.

Keywords: Kripke Modal Transition System (KMTS), Model Checking
Game, Partial Information

1 Introduction

In this work, we address the problem of verifying whether a model of a system in
the presence of partial information satisfies a required property. It is desirable to
express partial information explicitly, mainly in the preliminary phases of system
development, in order to better give support to the evolution of the model as
new information is acquired.

Model checking tools use algorithms that in general are defined over Kripke
structures that do not express partial information explicitly. However, 3-valued
model checking has been proposed which returns an undetermined value besides
True and False to work with modal transition systems which express indetermi-
nations explicitly. An example of such a structure is the Kripke Modal Transition
System - KMTS [8].
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The Kripke Modal Transition System structures express indetermination in
states and in transitions, which induce a set of possible Kripke models by trans-
forming indeterminations into determinations. In this work we propose a KMTS
model checking algorithm according to this interpretation. This KMTS model
checking algorithm should consider three possible results when verifying a prop-
erty: true (T ) when all Kripke models of the set satisfy the property, false (F )
when no Kripke models of the set satisfy the property and indefinite (⊥) when
some models satisfy and others do not. In [5], Grumberg proposes a 3-valued
model checking algorithm based on games to verify CTL properties over KMTS
using Kleene three-valued logic [8,10]. The algorithm uses a colouring function
over a game board for model checking. We take this algorithm as a reference
to develop the model checking algorithm presented in this paper. However, the
interpretation of a KTMS considered in [5] and [11] is different from ours. There
a KMTS is interpreted as an abstraction of a concrete Kripke structure and the
Kleene three valued logic is suitable for this. In interpreting a KMTS as a set of
Kripke models, however, we cannot reason with this logic because the ⊥ value
will not be compositional over conjunctions and disjunctions, i.e., if ϕ is ⊥ and
ψ is ⊥, ϕ ∧ ψ is not necessarily ⊥.

In order to achieve a model checking that fits our interpretation, we consider
the truth value of a formula in the model checking process represented as a set
of KMTSs. Over truth values (sets of KMTS models) of two formulas ϕ and ψ
we define a contraction operation that can calculate the truth value of formulas
composed of ϕ and ψ. A proper colouring function is defined over a game board
using this contraction operation.

The initial motivation of this work is to support the framework for KMTS
revision combined with a model checking game proposed in [6], where a KMTS
is interpreted as a set of Kripke models. The algorithms for revision in [6] took as
reference the Grumberg 3-valued model checking game and can only give partial
results because of the difference in semantics reported above. Our Contraction
Model Checking algorithm solves this problem enabling a KMTS complete revi-
sion. We forecast that this algorithm can also be used in other contexts and can
be adjusted to other logics unlike CTL.

With regards to the organization of this paper, in Section 2 we present CTL,
Kripke structures and KMTS interpreted as a set of CTL models. Section 3
presents the semantics of CTL w.r.t KMTS interpreted as a set of Kripke struc-
tures. In Section 4 we present KMTS set operations, including the contraction
operation. We present in Section 5 our Contraction Model Checking and finally
in Section 6 we present related works and make some final considerations.

2 Computation Tree Logic and Kripke Structures

Computation Tree Logic (CTL) [3,9] is a temporal logic that presupposes a
branched representation of the future over sequences of states of a Kripke struc-
ture which forms a computation tree. Path quantifiers can be used to make
reference to a future or all futures.



Definition 1. A Kripke structure is a tuple K = (AP, S, S0, R, L) where AP
is a set of atomic propositions; S is a finite set of states, S0 ⊆ S is the set of
initial states, R ⊆ S × S is the transition relation over S, and L : S → 2AP is a
labelling function of truth assignment over states.1

We denote a transition (s, s′) ∈ R of a Kripke structure K by s → s′. Fur-
thermore, to inform that s → s′ belongs to the set transitions of K we write
s→ s′ ∈ K.

Definition 2. Let l be a literal. A CTL formula φ in its negation normal formal
is defined as follows:

φ ::=> | F | l | (φ ∨ φ) | (φ ∧ φ) | EXφ | AXφ |
E[φUφ] | A[φUφ] | E[φRφ] | A[φRφ]

In Definition 2, A and E are path operators meaning for all paths and exists
a path, respectively. The operators X,U and R mean, respectively, next state,
until (in the sense that the left φ must hold along the path until the right
φ holds) and release (the until dual operator). Excluding the conjunction and
the disjunction, all the other operators must be bound by path operators. The
complete semantics of the CTL formulas can be found in [3] and [9]. As the CTL
semantics are defined over Kripke structures, we will also call these structures
CTL models.

2.1 Kripke Modal Transition System

The Kripke Modal Transistion System is capable of representing incomplete
system information explicitly. A KMTS has two kinds of transitions, must tran-
sitions and may transitions, that express transitions that must occur (certain
behaviour) and transitions that may occur (the behaviour is uncertain) in the
system. Incomplete information can be also expressed in the states of a KMTS,
because in any state of the model an atomic property can be defined or undefined
(uncertain state).

Definition 3. Let AP be a set of atomic propositions and Lit = AP ∪{¬p | p ∈
AP} the set of literal over AP . A Kripke modal transition system (KMTS) is a
tuple M = (AP, S,R+, R−, L), where S is a set of finite sates, R+ ⊆ S ×S and
R− ⊆ S × S are transition relations such that R+ ⊆ R−, and L : S → 2Lit is a
label function, such that for all state s and p ∈ AP , at most one between p and
¬p occurs.

In the definition above the transitions R+ and R− correspond to the transi-
tions must and may respectively.

1 Although the CTL semantics consider Kripke structures with total relation transi-
tion, such a requirement can be released and we assume a Kripke structure with a
partial transition relation instead.



2.2 KMTS as a set of Kripke Structures

In [6] the authors interpret a KMTS as a set of Kripke structures. According to
this interpretation, a (si, sj) may transition can lead to two CTL models, one
with a (si, sj) transition and another without this transition, and an indefinite
literal l in a state si can lead to two CTL models: one which has l labelled in the
correspondent state si and another one with ¬l labelled in si. The authors define
a KMTS expansion in CTL models with respect to all their indetermination
leading to an exponential set with 2m Kripke structures, where m is the number
of indeterminations.
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Fig. 1: Expansion K(M) of the KMTS M. The dashed arrows represent may
transitions and the solid ones represent must transitions.

Let M be a KMTS, we denote by K(M) the set of Kripke structures repre-
sented by M. Figure 1 illustrates a KMTS M and its expansion set K(M). Since
the state s1 of M is neither labelled with m nor ¬m, and the KMTS has two
may transitions (s0 → s1 and s0 → s2), M leads to eight CTL models.

Definition 4. Let M1 and M2 be two KMTSs. We say M1 is an instance of M2

denoting by M1 vM2 iff K(M1) ⊆ K(M2).

An instance of a KMTS M represents a subset of Kripke structures from
K(M) and in order to represent this subset, an instance of M can be addressed.
To do so, we use some change operations that change a KMTS M into an instance
of it. We argue that sets of instances represented by change operations have some
desired properties which allow the definition of some set operations, defined in
Section 4, such as the contraction operation which are the key for the contraction
model checking.

There are 3 primitive change operations to generate KMTS instances:

P1 (s, s′): which removes the pair (s, s′) from the relation R−

P2 (s, s′): which transforms (s, s′) of R− to (s, s′) of R+

P3 (s, l): which assigns a literal l to the state s if l is undefined in L(s)



As for example, the application of the operation P2(s0, s2) over the KMTS
M presented in Figure 1 generates a KMTS that exactly represents the Kripke
structures k1, k2, k3 and k4 presented in the same figure. Likewise, the application
of the operations P2(s0, s2) and P3(s1,¬m) generates a KMTS that exactly
represents the Kripke structures k2 and k3.

The application of a change over a KMTS is sometimes not encouraged. For
example, we cannot apply the operations P3(s, l) and P3(s,¬l) over a KMTS
nor can we apply P1(s, s′) and P2(s, s′) because we cannot define a KMTS that
has a transition s→ s′ that belongs to the set R+, but it does not belong to the
set R−. We call such operations complement operations.

Definition 5. Let p a primitive operation, the complement operation of p de-
noted by ¬p is defined as follows:

(i) p = P3(s, l) iff ¬p = P3(s,¬l)
(ii) p = P1(s, s′) iff ¬p = P2(s, s′)

We say that two set of changes are not compatible if both have at least a
complement primitive operation of the another one.

Definition 6. A set X of changes is not compatible with a set Y of changes,
denoting by X 6' Y , iff exists an operation p ∈ X such that ¬p ∈ Y .

3 Semantics of CTL with respect to KMTS

In this section we consider some notations, definitions and properties used to
define the semantics of CTL for KMTS interpreted as a set of Kripke structures
which is presented at the end of this section.

Definition 7. Let M be a KMTS. The set of M states reachable from a state

s ∈ S of M is the set
−→
S (s) = {s′ ∈ S|s→ s′ ∈ R−}.

Definition 8. Let M be a KMTS, s → s′ ∈ R− a may transition of it. The
subset of Kripke structures in K(M) that does not have the transition s→ s′ is
the set

[
R/
]
M

(s, s′) = {k ∈ K(M) | s→ s′ 6∈ k}.

Definition 9. Let M be a KMTS and ϕ a CTL formula. The subset of Kripke
structures represented by M that satisfies ϕ starting at a state s ∈ S is the set[
ϕ
]s
M

= {k ∈ K(M) |k, s |= ϕ}.

Definition 10. Let M be a KMTS and ϕ a CTL formula. We define the sets
successive union(

[⋃ ]s
M

(ϕ)) and successive intersection (
[⋂ ]s

M
(ϕ)) as follows:[⋃]s

M
(ϕ) =

⋃
s′∈
−→
S (s)

([
ϕ
]s′
M
\
[
R/
]
M

(s, s′)
)
;

[⋂]s
M

(ϕ) =
⋂

s′∈
−→
S (s)

([
ϕ
]s′
M
∪
[
R/
]
M

(s, s′)
)
.



The set successive union captures all the Kripke structures represented by M
that satisfy ϕ starting at a state s′ reachable from a state s through the transition
s → s′, excluding those ones that do not have such a transition. On the other
hand, the set successive intersection captures all Kripke structures that satisfy ϕ
starting at every state s′ reachable from s through the transition s→ s′. Indeed,
the sets successive union and successive intersection capture those models that
satisfy the CTL formulas EXϕ and AXϕ, respectively.

Proposition 1. Let M be a KMTS, s a state of it and ϕ a CTL formula. A
Kripke structure k belongs to

[⋃ ]s
M

(ϕ) iff k ∈ K(M) and k, s |= EXϕ.

Proof. k, s |= EXϕ iff ∃s→ s′ ∈ k s.t k, s′ |= ϕ (I).

“⇒” From Definition 9, we have ∀k ∈
[
ϕ
]s
M

; k, s |= ϕ and k ∈ K(M). So,

∀k ∈
([
ϕ
]s′
M
\
[
R/
]
M

(s, s′)
)
; k, s′ |= ϕ and s → s′ ∈ k (II). Thus, from

(II) and (I), we have ∀k ∈
([
ϕ
]s′
M
\
[
R/
]
M

(s, s′)
)
; k, s |= EXϕ. This way,

∀k ∈
⋃

s′∈
−→
S (s)

([
ϕ
]s′
M
\
[
R/
]
M

(s, s′)
)
; k, s |= EXϕ and k ∈ K(M). Therefore,

∀k ∈
[⋃ ]s

M
(ϕ); k, s |= EXϕ and k ∈ K(M).

“⇐” Let us suppose k, s |= EXϕ and k ∈ K(M). From (I), ∃s→ s′ ∈ k, k, s′ |=
ϕ. Thus, k ∈

[
ϕ
]s′
M

and k 6∈
[
R/
]
M

(s, s′). So, k ∈
[
ϕ
]s′
M
\
[
R/
]
M

(s, s′).

Therefore, k ∈
⋃

s′∈
−→
S (s)

[
ϕ
]s′
M
\
[
R/
]
M

(s, s′) and k ∈
[⋃ ]s

M
(ϕ).

Definition 11. The semantics of a CTL formula ϕ in its negation normal form
w.r.t a KMTS is presented in Table 1.

Table 1: Semantics of a CTL formula ϕ w.r.t a KMTS M .

Formula > F ⊥

‖l‖M (s) l ∈ L(s) ¬l ∈ L(s) otherwise

‖ϕ1 ∧ ϕ2‖M (s)
[
ϕ1

]s
M

∩
[
ϕ2

]s
M

= K(M)
[
ϕ1

]s
M

∩
[
ϕ2

]s
M

= ∅ otherwise

‖ϕ1 ∨ ϕ2‖M (s)
[
ϕ1

]s
M

∪
[
ϕ2

]s
M

= K(M)
[
ϕ1

]s
M

∪
[
ϕ2

]s
M

= ∅ otherwise

‖EXϕ‖M (s)
[⋃ ]s

M
(ϕ) = K(M)

[⋃ ]s
M

(ϕ) = ∅ otherwise

‖AXϕ‖M (s)
[⋂ ]s

M
(ϕ) = K(M)

[⋂ ]s
M

(ϕ) = ∅ otherwise

‖E[ϕ1Uϕ2]‖M (s)
[
ϕ2

]s
M

∪
([
ϕ1

]s
M

∩
[⋃ ]s

M
(E[ϕ1Uϕ2])

)
= K(M)

[
ϕ2

]s
M

∪
([
ϕ1

]s
M

∩
[⋃ ]s

M
(E[ϕ1Uϕ2])

)
= ∅ otherwise

‖A[ϕ1Uϕ2]‖M (s)
[
ϕ2

]s
M

∪
([
ϕ1

]s
M

∩
[⋃ ]s

M
(A[ϕ1Uϕ2])

)
= K(M)

[
ϕ2

]s
M

∪
([
ϕ1

]s
M

∩
[⋃ ]s

M
(A[ϕ1Uϕ2])

)
= ∅ otherwise

‖E[ϕ1Rϕ2]‖M (s)
[
ϕ2

]s
M

∩
([
ϕ1

]s
M

∪
[⋃ ]s

M
(E[ϕ1Uϕ2])

)
= K(M)

[
ϕ2

]s
M

∩
([
ϕ1

]s
M

∪
[⋃ ]s

M
(E[ϕ1Uϕ2])

)
= ∅ otherwise

‖A[ϕ1Rϕ2]‖M (s)
[
ϕ2

]s
M

∩
([
ϕ1

]s
M

∪
[⋃ ]s

M
(A[ϕ1Uϕ2])

)
= K(M)

[
ϕ2

]s
M

∩
([
ϕ1

]s
M

∪
[⋃ ]s

M
(A[ϕ1Uϕ2])

)
= ∅ otherwise



Proposition 2. Let M be a KMTS and ϕ a CTL formula, then

‖ϕ‖M (s) =

> iff ∀k ∈ K(M); k, s |= ϕ = T ;
F iff ∀k ∈ K(M); k, s |= ϕ = F ;
⊥, otherwise

Proof. It follows straight from the semantics.

4 KMTS Operations

The CTL semantics over KMTS interpreted as a set of Kripke structure deals
directly with set operations. Thus, in order to decide if a set of Kripke structures
represented by a KMTS M satisfies a CTL property, we should decide if every
CTL model in K(M) satisfies such a property. However, it is not necessary
because we can deal directly with M, instead of K(M). Therefore, in this section,
we define set operations over KMTSs and we prove some properties and some
limitations as well.

We write M(X) to denote an instance generated by the application of a set
X of changes over a KMTS M .

Definition 12. Let M,M1,M2 be KMTSs, X1 and X2 two set of changes, such
that M1 v M,M2 v M and M1 = M(X1),M2 = M(X2). We define the opera-
tions intersection, union and difference, with respect to KMTS as :

Union: M1 tM2 ={M1,M2}

Intersection: M1 uM2 =

{
∅ , iff X1 6' X2

{M(X1 ∪X2)} , otherwise

Difference: M1 \M2 =

{ {M1} iff X1 6' X2⋃
pi∈(X2\X1)

{M
(
X1 ∪ {¬pi}

)
} otherwise

The difference operation M1\M2 generates a set of KMTS such that the CTL
models represented by them are present in K(M1) but are not present in K(M2).
As M1 and M2 are instances of M, i.e., they can be defined from changes over
M then the models resulting from the difference can be defined from the set of
changes that generate M1 and M2, i.e., X1 and X2, respectively. As a result, if X1

and X2 are not compatible the intersection between the models is empty and the
difference is M1. If they are compatible, then the models resulting from the dif-
ference are obtained from M by the set of changes X1 (X1 generates M1 from M)
together with the complementary primitive operations in X2 which do not belong
to X1 (X1∪{¬pi}) to eliminate the intersection between K(M1) and K(M2). For
example, for the KMTS M2 and M3 illustrated in Figure 2, M2 \M3 generates
a set containing only the top Kripke structure of the set K(M2). This model is
defined by the set of changes X ′ = {P1(s0, s2), P2(s0, s1)} ∪ {P3(s1,m)} since



M2 = M({P1(s0, s2), P2(s0, s1)}) and M3 = M({P2(s0, s1), P3(s1,¬m)}) and
P3(s1,¬m) does not belong to X1.

The intersection operation M1uM2 generates a single set with a KMTS that
only represents the CTL models in K(M1) ∩ K(M2). The union operation is
simple and no further explanation is needed.
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Fig. 2: Instances M1, M2,M3 and M4 from the KMTS M illustrated in the Fig.
1 and the expansion sets K(M1),K(M2) and K(M3).

Sometimes the set of Kripke structures represented by two KMTS can be
represented by a single KMTS. For example, the expansion set of the KMTS
M4 in Figure 2 is exactly the union of the expansion set of the KMTSs M1 and
M2, i.e., K(M4) = K(M1) ∪K(M2), as a result {M1,M2} can be expressed by
a single KMTS, which is in this case M4. In this sense, we define a contraction
operation which is a specific kind of union for these cases. If two KMTSs cannot
be contracted into a single one, then the contraction operation will be equivalent
to the union operation.

Definition 13. Let M be a KMTS, M1 and M2 instances of M generated, re-
spectively, by the set of changes X1 and X2. The contraction operation, denoted
by M1 t+ M2, is defined as:

M1 t+ M2 =


{M(X1 ∩X2)} iff X1 ⊆ X2 or X2 ⊆ X1 or

∃p ∈ X1 s.t ¬p ∈ X2 and
X1 \ {p} = X2 \ {¬p}

{M1, M2} otherwise

In order to contract two models into a single one, it is necessary (but not
enough) that both models have at most one complementary operation w.r.t each



other, otherwise the contraction operation results in a set containing exactly the
two input models. We explain the contraction operation through an example. Let
us suppose KMTSs M1 = M(X1) and M2 = M(X2) such that X1 ⊆ X2. Thus,
X1 ∩X2 = X1 and K(M2) ⊆ K(M1) which implies that the contraction results
in M1, i.e., M1t+M2 = M(X1∩X2) = M1. Consider now X1 and X2 such that
X1 has among all its operations only one operation p which is complementary
with an operation ¬p in X2 and X1 is equal to X2 unless this operation. The
operation p or ¬p can be applied over M leading to the instances M1 = M(X1)
and M2 = M(X2). So, this case reduces to the previous one, i.e., the contraction
result is M(X1 ∩X2) since K(M(X1 ∩X2)) = K(M1) ∪K(M2)).

In Figure 2, the model M1 can be contracted with M2, i.e., M1 t+M2 = M4

because X1 \ {P2(s0, s2)} = X2 \ {P1(s0, s2)} and P1(s0, s2) is complementary
with P2(s0, s2). Furthermore, the model M1 can be contracted with M4 and the
model M2 can be contracted with M4, both resulting in the model M4. However,
M3 cannot be contracted with any other model in Figure 2.

4.1 Dealing with Sets of KMTSs

To deal with a set of CTL models, we can consider a KMTS whose expansion
represents these models. However, a single KMTS sometimes is not capable of
representing a specific set of CTL models and in order to perform such a task a
set of KMTSs can be addressed. Computationally, a set of KMTSs is far more
convenient because it is preferable to deal directly with a KMTS instead of its
expansion set. In order to achieve our contraction model checking we define in
this section a partition set and a full partition set over a set of KMTSs and we
define some operations over them.

Let M be a KMTS and Γ a set of instances of M. It is always possible to
construct a set Γp such that each element in it is an instance of M and the
intersection of any two instances of Γ is always empty.

Definition 14. Let M be a KMTS and Γ a set of instances of it. Γ is a Partition
Set (PS) of M iff every model in Γ is an instance of M and ∀M1,M2 ∈ Γ,M1 u
M2 = ∅.

Definition 15. Let Γ and Γ ′ be two set of instances of a KMTS M. Γ and Γ ′

are equivalent, denoting by Γ ≡ Γ ′, iff
⋃

Mi∈Γ
K(Mi) =

⋃
Mi∈Γ ′

K(Mi).

Definition 16. Let Γ1 and Γ2 be two sets of instances of a KMTS. We define
the difference (\\), intersection (u· ) and union (t· ) operations as:

Γ1\\Γ2 =
⋃

Mi∈Γ1,
Mk∈Γ2

Mi \Mk Γ1 u· Γ2 =
⋃

Mi∈Γ1,
Mk∈Γ2

Mi uMk

Γ1 t· Γ2 = Γ1 ∪ PS(Γ2\\(Γ1u· Γ2))

where PS(Γ ) is a Partition Set equivalent to a set of instances Γ .



Let K(Γ ) be the set of all Kripke structures represented by every KMTS in
Γ . The difference, intersection and union operation in Definition 16 calculates
respectively the difference, intersection and union of the set with models sets
represented by these KMTSs. In relation to the intersection operation defined
over two KMTSs sets Γ1 and Γ2 it results in a set Γ ′ such that K(Γ ′) = K(Γ1)∩
K(Γ2). The union and difference operations are interpreted similarly.

Proposition 3. If Γ1 and Γ2 are two PS of a KMTS M, then Γ1 u· Γ2 and
Γ1 t· Γ2 is a PS.

Proof. It follows straight from the Definition 16.

Theorem 1. For any set of instances Γ of a KMTS M there is always a PS Γ ′

such that Γ ≡ Γ ′.

Proof. Let M be a KMTS, Γ a set of instances of M and M1 a M instance
in Γ . Create the set Γ1 = Γ\\ {M1}. Then, ∀Mi ∈ Γ1,Mi u M1 = ∅ by the
difference operation and Γ1 ∪ {M1} ≡ Γ . Choose an element M2 ∈ Γ1, then
the set Γ ′1 = {M1,M2} is a PS. Create now the set Γ2 = Γ1\\ {M2}, then
∀Mi ∈ Γ2, Mi uM2 = ∅ and Mi uM1 = ∅ and Γ2 ∪ {M1,M2} ≡ Γ . Choose
an element M3 in Γ2, then {M1,M2,M3} is a PS and Γ3 ∪ {M1,M2,M3} ≡ Γ .
Following this construction we achieve at the end a PS equivalent to Γ .

If a PS of a KMTS M represents all the CTL models of K(M), then we say
such a PS is a Full Partition Set.

Definition 17. Let M be a KMTS and Γ a set of instances of it. We say Γ is
a Full Partition Set (FPS) of M iff Γ is a PS and K(M) =

⋃
Mi∈Γ

K(Mi).

Corollary 1. If Γ is a set of instances of a KMTS M and K(M) =
⋃

Mi∈Γ
K(Mi),

then there is a FPS Γ ′ such that Γ ≡ Γ ′.

Every KMTS M can be obtained from a finite number of contraction opera-
tions over a FPS of M. In order to prove it, we first define a Tree Partition Set
and show how to represent a PS over this structure.

4.2 Tree Partition Set

A Tree Partition Set (TPS) is a binary tree that represents a partition set Γ from
a KMTS M. Each node v of a TPS is labelled by a primitive change operation
LT (v) applicable over M.

Definition 18. A Tree Partition Set (TPS) of a KMTS M is a tuple TM =
(N, v0, E, LT , Lf,Rg), where N is a finite set of nodes, v0 ∈ N is the root node,
E ⊆ N × N is the set of edges, LT is a partial labelling function that maps
each node in N to a primitive operation applicable over M such that v0 is the
only node of a TPS that is not defined in LT ; and Lf , Rg are partial functions
that map a node to its left and right child respectively. Furthermore, for every
non-end node v ∈ N , there are nodes v1, v2 ∈ N such that Lf(v) = v1 and
Rg(v) = v2 iff LT (v1) = p and LT (v2) = ¬p.



Let π = v0 → v1 → · · · → vn be a path between the nodes v0 and vn in a
TPS, we denote by π \ v0 the subpath v1 → · · · → vn of π, and v ∈ π to denote
that a node v belongs to a path π. We highlight that each operation that labelled
a vertice along a path v0 to vn follows from an indetermination of the KMTS.

Definition 19. Let M a KMTS, TM = (N, v0, E, LT , Lf,Rg) a TPS. We define
the operation Change(vn) that maps the single path π = v0 → v1 → · · · → vn
between v0 and any node vn ∈ TM to a set of changes applicable over M as:

Change(vn) =
⋃

vk∈π\v0

{LT (vk)}

A change from a node v as defined above considers all primitive changes that
occur along the single path from the root to v excluding the root node.

The Change(v) of any node in a TPS TM when applied over a KMTS M
generates an instance of it and we say a node represents an instance of M. The
set of instances represented by every end-node of a TPS is a PS.
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Fig. 3: A Tree Partition Set that represents the PS {M1,M2,M3,M4}.

The Figure 3 illustrates a PS Γ from the KMTS M presented in Figure 1 and
a TPS TM that represents Γ . M1,M2,M3 and M4 are generated from changes of
TPS end-nodes, i.e., by the application of Change(v3), Change(v7), Change(v6)
and Change(v8) over M, respectively .

Lemma 1. Let Γ be a PS w.r.t a KMTS M represented by TPS TM and M ′

an instance of M. If Γ ∪ {M ′} results in a PS, then there is a PS Γ ′ equivalent
to it that can be also represented by a TPS.

Proof. From the contraction operation we have that for any set of change X
and primitive operation p, M(X ∪ {p} t+ M(X ∪ {¬p}) = M(X) (I). Create
a TPS T ′M equal to TM . If M ′ is an instance of M then it is generated from
a set X ′ of changes, i.e., M ′ = M(X ′). Select in T ′M the following subpath
π = v0 → · · · → vi in such a way Change(vi) ⊂ X ′ and vi has only one child
vi+1 such that LT (vi+1) 6∈ X ′ or vi has two children where LT (Lf(vi)) 6∈ X ′ and
LT (Rg(vi)) 6∈ X ′.



Case 1. vi has only one child vi+1 and LT (vi+1) 6∈ X ′. Then there are two
cases: ¬LT (vi+1) ∈ X ′ or ¬LT (vi+1) /∈ X ′.
(a) ¬LT (vi+1) ∈ X ′. Create a node vi+2 to be the other child of vi and add to T ′M
the following path π1 = v0 → · · · → vi → vi+2 → · · · → v′ such that Change(v′)
= X ′ and LT (vi+2) = ¬LT (vi+1). Thus, the resulting T ′M represents the PS
Γ ′ = Γ ∪ {M ′}.
(b) ¬LT (vi+1) 6∈ X ′. Let Xi = Change(vi), then Xi ⊂ X ′ and X ′ = Xi ∪ (X ′ \
Xi). Let M ′1 = M(X ′ ∪ {p}) and M ′2 = M(X ′ ∪ {¬p}), where p = LT (vi+1).
From (I) we have M ′ = M(X ′) = M(X ′ ∪ {p}) t+ M(X ′ ∪ {¬p}) which means
M ′ = M ′1t+M ′2. Thus, the set Γ ′ = Γ∪{M ′1,M ′2} and it is equivalent to Γ∪{M ′}
and by hypothesis it is a PS. So, if we represent M ′1 and M ′2 in T ′M then we
achieve a representation of M ′ in T ′M . To do so, create a node vi+2 to be the other
child of vi and add to T ′M the path π1 = v0 → . . . vi → vi+2 → · · · → v′ such that
LT (vi+2) = ¬LT (vi+1) and Change(v′) = X ′∪{LT (vi+2)}. Thus T ′M represents
M ′2. Let X ′1 = X ′∪{LT (vi+1)}, in order to represent M ′1, we must create a path
π2 = v0 → · · · → vi → vi+1 → · · · → v′ such that Change(v′) = X ′1. To achieve
this select in T ′M a subpath π′2 = v0 → · · · → vi → vi+1 → · · · → vk in such a way
Change(vk) ⊂ X ′1 and or vk has only one child vk+1 such that LT (vk+1) 6∈ X ′1
or vk has two children where LT (Lf(vk)) 6∈ X ′1 and LT (Rg(vk)) 6∈ X ′1. This
reduces to the cases (1) and (2).

Case 2. vi has two children where LT (Lf(vi)) 6∈ X ′ and LT (Rg(vi)) 6∈ X ′.
Let Xi = Change(vi), then Xi ⊂ X ′ and X ′ = Xi ∪ (X ′ \ Xi). Let M ′1 =
M(X ′∪{p}) and M ′2 = M(X ′∪{¬p}), where p = LT (Lf(v1)). From (I) we have
M ′ = M(X ′) = M(X ′ ∪ {p}) t+ M(X ′ ∪ {¬p}) which means M ′ = M ′1 t+ M ′2.
Thus, the set Γ ′ = Γ ∪ {M ′1,M ′2} is is equivalent to Γ ∪ {M ′} and by hypoth-
esis it is a PS. So, we must represent in T ′M the instances M ′1 and M ′2. Let
X ′1 = X ′ ∪ {LT (Lf(vi))} and X ′2 = X ′ ∪ {LT (Rg(vi))}, in order to represent
M ′1 we must create a path π1 = v0 → · · · → vi → Lf(vi) → · · · → vj where
Change(vj) = X ′1. Select in T ′M a subpath π′1 = v0 → · · · → vi → Lf(vi) →
· · · → vk in such a way Change(vk) ⊂ X ′1 and or vk has only one child vk+1

wherein LT (vk+1) 6∈ X ′1, or vk has two children where LT (Lf(vk)) 6∈ X ′1 and
LT (Rg(vk)) 6∈ X ′1. This reduces to the cases (1) and (2). To represent M2 we
proceed simillary as we have done to M1. Since a path in a TPS is finite, even-
tually the cases 1− (b) and 2 will lead to the case 1− (a) and then the TPS T ′M
represents the resulting PS Γ ′.

From Lemma 1, we prove that for every PS Γ there is always a PS Γ ′ equiv-
alent to Γ that is represented by a TPS.

Theorem 2. If Γ is a PS w.r.t a KMTS M, then there is always a PS Γ ′

equivalent to Γ which can represented by a TPS TM .

Proof. Let Γ = {M1, . . . ,Mn}, each {Mi} is also a PS by definition. From
Lemma 1, there is a PS Γ2 ≡ {M1} ∪ {M2} which can be represented by a TPS.
In addition, a PS Γ3 equivalent to Γ2 ∪ {M3} can also be generated and can be
represented by a TPS as well. Sucessively, a PS Γn ≡ Γn−1 ∪ {Mn} that can be
represented by a TPS can be generated which is equivalent to {M1, . . . ,Mn} = Γ .



Theorem 3. Let M be a KMTS and TM = (N, v0, E, LT , Lf,Rg) a TPS that
represents a PS Γ defined from M . If Γ is a FPS then for every non-end node
vk ∈ N and Xk = Change(vk) Mk = M(Xk) can be generated from a finite
number of contraction operations in Γ .

Proof. The proof is by induction on the structure of TM . Let πk = v0 → · · · → vk
be a path in Tm. If M has m indefinites, then 1 ≤ k ≤ m.

Base case: let πk = v0 → · · · → vk−1 → vk be a longest path of TM .Then, vk
is an end-node. As πk is one of the longest path and Γ is a FPS, then the path
π′k = v0 → · · · → vk−1 → v′k belongs to TM , where LT (vk) = ¬LT (v′k). Let p =
LT (vk), Xk−1 = Change(vk−1). Change(vk) = Xk−1 ∪ {p} and Change(v′k) =
Xk−1 ∪ {¬p}. So we have M(Xk−1) = M(Xk−1 ∪ {p}) t+ M(Xk−1 ∪ {¬p}).
Therefore, M(Xk−1) is obtained by one contraction operation in Γ .

Induction Step: let us suppose any M(Xk) can be generated by a finite number
of contraction operations. We show that ∀k − 1, M(Xk−1) can be generated
by a finite number of contraction operations as well. The path πk−1 = v0 →
· · · → vk−1 has two children vk and v′k where LT (vK) = ¬LT (v′k), due to the
fact Γ is a FPS. Let p = LT (vk), Xk−1 = Change(vk−1), Xk = Change(vk)
and X ′k = Change(v′k). Then, Xk = Xk−1 ∪ {p} and X ′k = Xk−1 ∪ {¬p}. So,
M(Xk−1) = M(Xk)t+M(X ′k). By the induction hypothesis M(Xk) and M(X ′k)
can be obtained by a finite number of contraction operations and so is M(Xk−1).

Theorem 3 implies in the Corollary 2 which guarantees that if we have a FPS
of M then it is always possible to produce M from a set of contractions opera-
tions over this FPS. The contraction model checking algorithm uses contractions
operations over partitions sets and when a full partition set is achieved it means
that all Kripke models satisfy the property been verified and consequently M
represents the truth values >. The other truth values are represented by PS
that is not a FPS and in this case if the PS is not empty then it represents the
truth values ⊥ and if is empty it represents the truth values F .

Corollary 2. Let M be a KMTS and Γ a PS of it. If Γ is a FPS then M can
be generated from a finite number of contraction operations in Γ .

Let Γ be a PS and Γ ′ a PS resulting from a finite number of contraction
operations over Γ , we say Γ ′ is a Maximal Partition Set (MPS) if there is no
more contraction applicable over Γ . Therefore, according to Corollary 2 if a PS
is in fact a FPS then its MPS is exactly the single set that contains M . We write
t+(Γ ) to denote the MPS resulting from Γ .

5 The Contraction Model Checking

Some works such as [11] and [5] propose model checking game approaches, which
consist of a game played over a board by two players: ∃ve and ∀belard. The



former tries to prove that the CTL specification holds, whereas the latter tries
to refute the specification. In order to decide the winner of the game (respectively
the model checking result), a colouring algorithm that maps each configuration
of the game board to one truth value is defined. The colour set for the initial
configuration of the board is the model checking result. A model checking game
combined with the contraction operation applied in each configuration of the
game suffices to determine the model checking result to a KMTS interpreted as
a set of CTL models. We call this new approach Contraction Model Checking.

Let M be a KMTS, s0 a state of it and ϕ a CTL formula. The model checking
game for M, s0 |= ϕ is played over a board (game-graph) constructed accord-
ing to the game rules that define the possible moves each player can make in
a configuration it owns. A board is a graph of configurations constructed by
decomposing ϕ in its subformulas following the game rules presented in Figure
4. Every configuration of a game-graph belongs to S×sub(ϕ), where S is the set
of M states and sub(ϕ) is the set of subformulas of ϕ. We denote a configuration
by s ` ψ, where ψ is a subformula of ϕ and s is a state of M .

(1) s ` ψ0 ∨ ψ1
s ` ψi

: i ∈ {0, 1} (∃ve) (2) s ` ψ0 ∧ ψ1
s ` ψi

: i ∈ {0, 1} (∀belard)

(3) s ` EX ϕ
t ` ϕ : (s, t) ∈ R− (∃ve) (4) s ` AX ϕ

t ` ϕ : (s, t) ∈ R− (∀belard)

(5) A(ϕ1Uϕ2)
s ` ϕ2∨(ϕ1∧AXA(ϕ1Uϕ2))

(∃ve) (6) E(ϕ1Uϕ2)
s ` ϕ2∨(ϕ1∧EXE(ϕ1Uϕ2))

(∃ve)

(7) A(ϕ1Rϕ2)
s ` ϕ2∧(ϕ1∨AXA(ϕ1Rϕ2))

(∃ve) (8) E(ϕ1Rϕ2)
s ` ϕ2∧(ϕ1∨EXE(ϕ1Rϕ2))

(∃ve)

Fig. 4: Game rules for the Model Checking Game

Let G be the game-graph for a KMTS M and CTL formula ϕ. The contrac-
tion model checking is a colouring function χ : V → {>, F,⊥}, where V is the set
of vertices of G, that maps each configuration in G to one truth value. We can
observe that the final truth value is calculated from sets of KMTS models that
represents truth values in the model checking process. The colouring function is
defined over a maximal contraction function δ that maps each configuration of
the game-graph to a maximal PS Γ . The expansion of the KMTSs in this PS is
exactly the set of Kripke structures that satisfy the formula in the respectively
state. As the resulting PS Γ is a MPS, Γ = {M} iff M satisfies ϕ in the respec-
tively input configuration, Γ = ∅ if no CTL model in K(M) satisfies ϕ, and Γ
is a PS different from {M} and ∅ otherwise.

Definition 20. Let M be a KMTS, s and s′ states of M, ϕ a CTL formula
and G the board of the game for the model checking M, s0 |= ϕ. The maximal
contraction function δ is defined recursively as:



δ(s ` l) =


{M} iff l ∈ L(s);

∅ iff ¬l ∈ L(s);

{M({P3(s, l)})} otherwise

δ(s ` EX ϕ) = t+
( ⊔
s′∈
−→
S (s)

· δ(s′ ` ϕ) u· {M({P2(s, s′)})}
)

δ(s ` AX ϕ) = t+
( l

s′∈
−→
S (s)

· δ(s′ ` ϕ) t· {M({P1(s, s′)})}
)

δ(ϕ1 ∨ ϕ2) = t+
(
δ(s ` ϕ1) t· δ(s ` ϕ2)

)
δ(ϕ1 ∧ ϕ2) = t+

(
δ(s ` ϕ1) u· δ(s ` ϕ2)

)
The configurations that follow from the rules (5) up to (8) have only one

child configuration, thus the value of the function δ in these configurations are
equivalent to the value defined in their single child. Hence, if s ` ϕ is a configu-
ration defined from one of the rules between (5) and (8) and s ` ψ is the single
configuration reached from it, then δ(s ` ϕ) = δ(s ` ψ).

Definition 21. Let M be a KMTS, s and s′ states of M, and ϕ a CTL formula.
The contraction model checking is a colouring function χ defined as follows:

χ(s ` ϕ) =


> iff δ(s ` ϕ) = {M}
F iff δ(s ` ϕ) = ∅
⊥ otherwise

6 Conclusions

In this work we developed a model checking game approach for model checking
a KMTS interpreted as a set of CTL models. The works [11] and [5] interpret
a KMTS as an abstraction of a concrete model to deal with the explosion state
problem in CTL and µ–calculus model checking and define a 3-valued model
checking which we take as reference for our contraction model checking. The
works [1] and [2] also address the abstraction problem through partial Kripke
structures which has indeterminations only in their states. The work reported in
[12] considers the abstraction approach to deal with partial system specification
through partial Kripke structures w.r.t Linear Tree Logic. In [8] the authors
extend this structure with transitions that represent possibilities defining the
KMTS structures. In [4] and [7] the authors consider MTS (Modal Transitions
Systems) to deal with the abstraction approach. In these works a Kleene 3-valued
logic or an equivalent interpretation is applied, while for the KMTS interpreta-
tion as a set of CTL models it does not hold. Moreover, none of these approaches



interprets a KMTS as a set of CTL models and to the best of our knowledge no
other work considers this interpretation.

We argue that in order to verify a set of Kripke structures, model checking
a KMTS that represents this set is on average better than model checking each
CTL model at a time in the set. Since the determinations of a KMTS M are
present in all the CTL models M represents, we can determine the truth value
of some property common to all CTL models at once over M and we agree it
can lead to a polynomial algorithm on average case. However, in the worst case
since a KMTS represents an exponential set of CTL models, model checking a
KMTS as a set of Kripke structures is NP-complete as we have already proven.
Despite this, the presentation of this proof is beyond the scope of this work.
We are investigating polynomial algorithms on average case and we intend to
conclude this investigation providing efficient algorithms for model checking a
KMTS as a set of CTL models in the future.
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